login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A206829
Number of distinct irreducible factors of the polynomial y(n,x) defined at A206821.
2
0, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 2, 3, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 3, 3, 1, 3, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 1, 3, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 1, 2, 4, 1, 3, 1, 2, 2, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 2, 2, 3, 1, 2, 2, 2, 1, 3, 1
OFFSET
1,5
COMMENTS
The first 6 polynomials: 1, x, 1+x, x^2, x^2-1, x^2-x, representing an ordering of the monic polynomials having coefficients in {-1,0,1}; see A206821.
EXAMPLE
y(5,x) = (x-1)(x+1), so a(5)=2.
MATHEMATICA
t = Table[IntegerDigits[n, 2], {n, 1, 1000}];
b[n_] := Reverse[Table[x^k, {k, 0, n}]]
p[n_] := p[n] = t[[n]].b[-1 + Length[t[[n]]]]
TableForm[Table[{n, p[n], Factor[p[n]]}, {n, 1, 6}]]
f[k_] := 2^k - k; g[k_] := 2^k - 2 + f[k - 1];
q1[n_] := p[2^(k - 1)] - p[n + 1 - f[k]]
q2[n_] := p[n - f[k] + 2]
y1 = Table[p[n], {n, 1, 4}];
Do[AppendTo[y1, Join[Table[q1[n], {n, f[k], g[k] - 1}],
Table[q2[n], {n, g[k], f[k + 1] - 1}]]], {k, 3, 8}]
y = Flatten[y1]; (* polynomials over {-1, 0, 1} *)
TableForm[Table[{n, y[[n]], Factor[y[[n]]]}, {n, 1, 10}]]
Table[-1 + Length[FactorList[y[[n]]]],
{n, 1, 120}] (* A206829 *)
CROSSREFS
Cf. A206821.
Sequence in context: A336123 A353849 A075661 * A319694 A335641 A163495
KEYWORD
nonn
AUTHOR
Clark Kimberling, Feb 12 2012
STATUS
approved