login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A206829 Number of distinct irreducible factors of the polynomial y(n,x) defined at A206821. 2
0, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 2, 3, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 3, 3, 1, 3, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 1, 3, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 1, 2, 4, 1, 3, 1, 2, 2, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 2, 2, 3, 1, 2, 2, 2, 1, 3, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,5
COMMENTS
The first 6 polynomials: 1, x, 1+x, x^2, x^2-1, x^2-x, representing an ordering of the monic polynomials having coefficients in {-1,0,1}; see A206821.
LINKS
EXAMPLE
y(5,x) = (x-1)(x+1), so a(5)=2.
MATHEMATICA
t = Table[IntegerDigits[n, 2], {n, 1, 1000}];
b[n_] := Reverse[Table[x^k, {k, 0, n}]]
p[n_] := p[n] = t[[n]].b[-1 + Length[t[[n]]]]
TableForm[Table[{n, p[n], Factor[p[n]]}, {n, 1, 6}]]
f[k_] := 2^k - k; g[k_] := 2^k - 2 + f[k - 1];
q1[n_] := p[2^(k - 1)] - p[n + 1 - f[k]]
q2[n_] := p[n - f[k] + 2]
y1 = Table[p[n], {n, 1, 4}];
Do[AppendTo[y1, Join[Table[q1[n], {n, f[k], g[k] - 1}],
Table[q2[n], {n, g[k], f[k + 1] - 1}]]], {k, 3, 8}]
y = Flatten[y1]; (* polynomials over {-1, 0, 1} *)
TableForm[Table[{n, y[[n]], Factor[y[[n]]]}, {n, 1, 10}]]
Table[-1 + Length[FactorList[y[[n]]]],
{n, 1, 120}] (* A206829 *)
CROSSREFS
Cf. A206821.
Sequence in context: A336123 A353849 A075661 * A319694 A335641 A163495
KEYWORD
nonn
AUTHOR
Clark Kimberling, Feb 12 2012
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 10 04:38 EST 2023. Contains 367699 sequences. (Running on oeis4.)