login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A206828
Number of solutions k of C(2k,k)=C(2n,n) (mod n), where 1<=k<n.
4
1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 1, 1, 2, 2, 3, 2, 2, 1, 8, 2, 1, 1, 5, 2, 1, 2, 11, 1, 0, 1, 4, 1, 3, 4, 1, 2, 1, 1, 8, 1, 15, 1, 2, 12, 1, 1, 5, 2, 3, 0, 1, 3, 3, 3, 1, 0, 1, 1, 2, 1, 1, 0, 5, 2, 23, 1, 4, 0, 4, 1, 7, 3, 1, 12, 2, 24, 2, 1, 8, 3, 3, 1, 6, 0, 3, 1, 37, 1, 3, 26, 1, 1, 1, 0, 4
OFFSET
2,3
COMMENTS
For a guide to related sequences, see A206588.
EXAMPLE
2 divides exactly two of the numbers 20-1, 20-2, 20-6, so that a(3)-2.
MATHEMATICA
s[k_] := Binomial[2 k, k];
f[n_, k_] := If[Mod[s[n] - s[k], n] == 0, 1, 0];
t[n_] := Flatten[Table[f[n, k], {k, 1, n - 1}]]
a[n_] := Count[Flatten[t[n]], 1]
Table[a[n], {n, 2, 120}] (* A206828 *)
CROSSREFS
Cf. A206588.
Sequence in context: A006571 A243906 A100889 * A327164 A094781 A023582
KEYWORD
nonn
AUTHOR
Clark Kimberling, Feb 15 2012
STATUS
approved