login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A206588
Number of solutions k of prime(k)=prime(n) (mod n), where 1<=k<n.
4
0, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 1, 2, 2, 0, 2, 1, 2, 1, 1, 1, 2, 1, 1, 0, 2, 0, 3, 1, 2, 2, 3, 1, 3, 1, 1, 2, 2, 1, 3, 1, 3, 2, 2, 1, 3, 1, 3, 2, 2, 1, 2, 1, 1, 1, 1, 1, 2, 0, 1, 1, 0, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 3, 0, 3, 0, 1, 1, 2, 0, 4, 1, 2, 1, 3, 1, 5, 1, 1, 0, 1, 0, 2, 0, 2, 1, 2
OFFSET
2,7
COMMENTS
In the following guide to related sequences, c(n) is the number of solutions (n,k) of s(k)=s(n) (mod n), where 1<=k<n.
s(n).............c(n)
prime(n).........A206588
prime(n+1).......A206589
n^2..............A057918
n^3..............A206590
Fibonacci(n+1)...A206713
2^(n-1)..........A206714
n!...............A072480
n(n+1)/2.........A206824
n^4..............A206825
n(n+1)(n+2)/6....A206826
n(n+1)(2n+1)/6...A206827
C(2n,n)..........A206828
For some choices of s, the limiting frequency of 0's in c appears to be a positive constant.
EXAMPLE
For k=1 to 7, the numbers p(8)-p(k) are 17,16,14,12,8,6,4, so that a(8)=2.
MATHEMATICA
f[n_, k_] := If[Mod[Prime[n] - Prime[k], n] == 0, 1, 0];
t[n_] := Flatten[Table[f[n, k], {k, 1, n - 1}]]
a[n_] := Count[Flatten[t[n]], 1]
Table[a[n], {n, 2, 120}] (* A206588 *)
CROSSREFS
Cf. A206589.
Sequence in context: A250205 A326017 A290307 * A302234 A345007 A026920
KEYWORD
nonn
AUTHOR
Clark Kimberling, Feb 09 2012
STATUS
approved