The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A206591 E.g.f.: Sum_{n>=0} x^(n^2)*exp(n^2*x). 2
1, 1, 2, 3, 28, 485, 5766, 53767, 430088, 3459465, 53303050, 1746391691, 58977262092, 1706810202253, 42923448632078, 965348202349455, 19877420584519696, 385436337079476497, 7654870637722391058, 199927590326456092435, 8556099311090244142100 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Compare to the partial theta series identity:
Sum_{n>=0} x^(n^2) = Sum_{n>=0} x^n * Product_{k=1..n} (1-x^(4*k-3))/(1-x^(4*k-1)).
LINKS
FORMULA
E.g.f.: Sum_{n>=0} x^n*exp(n*x) * Product_{k=1..n} (1 - x^(4*k-3)*exp((4*k-3)*x))/(1 - x^(4*k-1)*exp((4*k-1)*x)).
Let q = x*exp(x), then the e.g.f. equals the continued fraction:
A(x) = 1/(1- q/(1- q*(q^2-1)/(1- q^5/(1- q^3*(q^4-1)/(1- q^9/(1- q^5*(q^6-1)/(1- q^13/(1- q^7*(q^8-1)/(1- ...))))))))), due to a partial elliptic theta function identity.
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2/2! + 3*x^3/3! + 28*x^4/4! + 485*x^5/5! +...
where the e.g.f. is defined by:
A(x) = 1 + x*exp(x) + x^4*exp(4*x) + x^9*exp(9*x) + x^16*exp(16*x) +...
Let q = x*exp(x), then the e.g.f. also equals the q-series:
A(x) = 1 + q*(1-q)/(1-q^3) + q^2*(1-q)*(1-q^5)/((1-q^3)*(1-q^7)) + q^3*(1-q)*(1-q^5)*(1-q^9)/((1-q^3)*(1-q^7)*(1-q^11)) +...
PROG
(PARI) {a(n)=n!*polcoeff(sum(m=0, sqrtint(n+1), x^(m^2)*exp(m^2*x+x*O(x^n))), n)}
(PARI) {a(n)=local(X=x+x*O(x^n)); n!*polcoeff(1+sum(m=1, n+1, x^m*exp(m*X)*prod(k=1, m, (1 - x^(4*k-3)*exp((4*k-3)*X))/(1 - x^(4*k-1)*exp((4*k-1)*X))) ), n)}
for(n=0, 35, print1(a(n), ", "))
CROSSREFS
Sequence in context: A126266 A219975 A319146 * A003017 A096580 A371024
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 09 2012
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 29 14:11 EDT 2024. Contains 372952 sequences. (Running on oeis4.)