The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A206591 E.g.f.: Sum_{n>=0} x^(n^2)*exp(n^2*x). 2
 1, 1, 2, 3, 28, 485, 5766, 53767, 430088, 3459465, 53303050, 1746391691, 58977262092, 1706810202253, 42923448632078, 965348202349455, 19877420584519696, 385436337079476497, 7654870637722391058, 199927590326456092435, 8556099311090244142100 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Compare to the partial theta series identity: Sum_{n>=0} x^(n^2) = Sum_{n>=0} x^n * Product_{k=1..n} (1-x^(4*k-3))/(1-x^(4*k-1)). LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..400 FORMULA E.g.f.: Sum_{n>=0} x^n*exp(n*x) * Product_{k=1..n} (1 - x^(4*k-3)*exp((4*k-3)*x))/(1 - x^(4*k-1)*exp((4*k-1)*x)). Let q = x*exp(x), then the e.g.f. equals the continued fraction: A(x) = 1/(1- q/(1- q*(q^2-1)/(1- q^5/(1- q^3*(q^4-1)/(1- q^9/(1- q^5*(q^6-1)/(1- q^13/(1- q^7*(q^8-1)/(1- ...))))))))), due to a partial elliptic theta function identity. EXAMPLE G.f.: A(x) = 1 + x + 2*x^2/2! + 3*x^3/3! + 28*x^4/4! + 485*x^5/5! +... where the e.g.f. is defined by: A(x) = 1 + x*exp(x) + x^4*exp(4*x) + x^9*exp(9*x) + x^16*exp(16*x) +... Let q = x*exp(x), then the e.g.f. also equals the q-series: A(x) = 1 + q*(1-q)/(1-q^3) + q^2*(1-q)*(1-q^5)/((1-q^3)*(1-q^7)) + q^3*(1-q)*(1-q^5)*(1-q^9)/((1-q^3)*(1-q^7)*(1-q^11)) +... PROG (PARI) {a(n)=n!*polcoeff(sum(m=0, sqrtint(n+1), x^(m^2)*exp(m^2*x+x*O(x^n))), n)} (PARI) {a(n)=local(X=x+x*O(x^n)); n!*polcoeff(1+sum(m=1, n+1, x^m*exp(m*X)*prod(k=1, m, (1 - x^(4*k-3)*exp((4*k-3)*X))/(1 - x^(4*k-1)*exp((4*k-1)*X))) ), n)} for(n=0, 35, print1(a(n), ", ")) CROSSREFS Cf. A193421, A206592. Sequence in context: A126266 A219975 A319146 * A003017 A096580 A371024 Adjacent sequences: A206588 A206589 A206590 * A206592 A206593 A206594 KEYWORD nonn AUTHOR Paul D. Hanna, Feb 09 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 29 14:11 EDT 2024. Contains 372952 sequences. (Running on oeis4.)