login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A206589
Number of solutions (n,k) of p(k+1)=p(n+1) (mod n), where 1<=k<n.
2
1, 0, 2, 1, 2, 1, 1, 1, 1, 0, 3, 1, 2, 1, 2, 0, 2, 0, 2, 1, 2, 1, 1, 0, 0, 1, 1, 0, 4, 1, 2, 2, 2, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 2, 1, 0, 3, 1, 1, 1, 1, 0, 2, 1, 2, 2, 1, 1, 4, 0, 1, 1, 0, 0, 2, 0, 2, 2, 3, 0, 4, 1, 2, 2, 1, 1, 3, 1, 2, 1, 2, 1, 3, 1, 3, 2, 3, 1, 3, 0, 1, 0, 2, 1, 2, 0, 2, 0, 2
OFFSET
2,3
COMMENTS
Related to A206588, which includes differences p-2.
EXAMPLE
For k=1 to 5, the numbers p(7)-p(k+1) are 14,12,10,6,4, so that a(6)=2.
MATHEMATICA
f[n_, k_]:=If[Mod[Prime[n+1]-Prime[k+1], n]==0, 1, 0];
t[n_] := Flatten[Table[f[n, k], {k, 1, n - 1}]]
a[n_] := Count[Flatten[t[n]], 1]
Table[a[n], {n, 2, 120}] (* A206589 *)
CROSSREFS
Cf. A206588.
Sequence in context: A172303 A064391 A236470 * A086011 A124760 A077619
KEYWORD
nonn
AUTHOR
Clark Kimberling, Feb 09 2012
STATUS
approved