

A096580


a(n) = smallest m >= 2 such that Sum_{k=2..m} 1/(k*log(k)) >= n.


8




OFFSET

0,1


COMMENTS

The sum diverges (see link), so a(n) is welldefined.


LINKS



FORMULA



EXAMPLE

For m = 27 the sum is 1.992912323604..., for m = 28 it is 2.0036302389..., so a(2) = 28.
For m = 8717 the sum is 2.999991290360..., for m = 8718 it is 3.0000039326..., so a(3) = 8718.


MATHEMATICA

n = 0; m = 2; sum = 1/(m*Log[m]); lst = {};
While[n <= 3,
While[ sum < n, m++; sum += 1/(m*Log[m])];


CROSSREFS



KEYWORD

nonn,more,hard


AUTHOR



EXTENSIONS



STATUS

approved



