login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A319146 L.g.f. A(x) satisfies: [x^(n-1)] exp( n^2*x - n*A(x) ) = 0 for n>1. 2
2, 3, 28, 475, 11556, 362418, 13820696, 617990499, 31613351140, 1817581003238, 115889207486856, 8109201377360590, 617515197617355688, 50821356562425738180, 4494201727819787034288, 424930120163186457909923, 42774475244179902914458980, 4567011383256552019018866462, 515499978801248295048365872680, 61333960606400043841174213941210, 7671985428777785517888000656381240 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

a(2^k) is odd for k >= 1, and a(n) is even elsewhere.

LINKS

Paul D. Hanna, Table of n, a(n) for n = 1..300

FORMULA

a(n) ~ sqrt(1-c) * 2^(2*n - 3/2) * n^(n - 1/2) / (sqrt(Pi) * exp(n) * c^n * (2-c)^(n-1)), where c = -LambertW(-2*exp(-2)) = -A226775. - Vaclav Kotesovec, Aug 11 2021

EXAMPLE

L.g.f., A(x) = Sum_{n>=1} a(n)*x^n/n, begins

A(x) = 2*x + 3*x^2/2 + 28*x^3/3 + 475*x^4/4 + 11556*x^5/5 + 362418*x^6/6 + 13820696*x^7/7 + 617990499*x^8/8 + 31613351140*x^9/9 + 1817581003238*x^10/10 + ...

RELATED SERIES.

exp(A(x)) = 1 + 2*x + 7*x^2/2! + 82*x^3/3! + 3413*x^4/4! + 310306*x^5/5! + 47180827*x^6 + 10609392242*x^7/7! + 3284088709897*x^8/8! + 1333647722701378*x^9/9! + ... + A319144(n)*x^n/n!  +...

ILLUSTRATION OF DEFINITION.

The table of coefficients of x^k/k! in exp(n^2*x - n*A(x)) begins

n=1: [1, -1, -2, -48, -2616, -262080, -41718240, -9630270720, ...];

n=2: [1, 0, -6, -112, -5592, -547968, -86345120, -19809990912, ...];

n=3: [1, 3, 0, -222, -10728, -958824, -144971712, -32519314080, ...];

n=4: [1, 8, 52, 0, -18648, -1693248, -236690784, -50727983616, ...];

n=5: [1, 15, 210, 2420, 0, -2739720, -399251600, -80125144800, ...];

n=6: [1, 24, 558, 12192, 221184, 0, -616918320, -131299591680, ...];

n=7: [1, 35, 1204, 40278, 1272768, 33597312, 0, -196436730672, ...];

n=8: [1, 48, 2280, 106688, 4869552, 210771456, 7654459648, 0, ...]; ...

in which the n-th term in row n forms a diagonal of zeros after an initial '1'.

ODD TERMS.

The odd terms occur at positions 2^k for k >= 1, and begin:

a(2) = 3,

a(4) = 475,

a(8) = 617990499,

a(16) = 424930120163186457909923,

a(32) = 14084628818669848855677925942788864036579283666486658556963, ...

PROG

(PARI) {a(n) = my(A=[1], L=[2]); for(m=1, n+1, A=concat(A, 0); A[m] = Vec( exp(m^2*x +x*O(x^n))/Ser(A)^(m) )[m]/m ); L=Vec(Ser(A)'/Ser(A)); L[n]}

for(n=1, 21, print1(a(n), ", "))

CROSSREFS

Cf. A319144, A317344.

Sequence in context: A206592 A126266 A219975 * A206591 A003017 A096580

Adjacent sequences:  A319143 A319144 A319145 * A319147 A319148 A319149

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Sep 18 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 15 09:19 EDT 2022. Contains 356135 sequences. (Running on oeis4.)