The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A319146 L.g.f. A(x) satisfies: [x^(n-1)] exp( n^2*x - n*A(x) ) = 0 for n>1. 2
 2, 3, 28, 475, 11556, 362418, 13820696, 617990499, 31613351140, 1817581003238, 115889207486856, 8109201377360590, 617515197617355688, 50821356562425738180, 4494201727819787034288, 424930120163186457909923, 42774475244179902914458980, 4567011383256552019018866462, 515499978801248295048365872680, 61333960606400043841174213941210, 7671985428777785517888000656381240 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS a(2^k) is odd for k >= 1, and a(n) is even elsewhere. LINKS Paul D. Hanna, Table of n, a(n) for n = 1..300 FORMULA a(n) ~ sqrt(1-c) * 2^(2*n - 3/2) * n^(n - 1/2) / (sqrt(Pi) * exp(n) * c^n * (2-c)^(n-1)), where c = -LambertW(-2*exp(-2)) = -A226775. - Vaclav Kotesovec, Aug 11 2021 EXAMPLE L.g.f., A(x) = Sum_{n>=1} a(n)*x^n/n, begins A(x) = 2*x + 3*x^2/2 + 28*x^3/3 + 475*x^4/4 + 11556*x^5/5 + 362418*x^6/6 + 13820696*x^7/7 + 617990499*x^8/8 + 31613351140*x^9/9 + 1817581003238*x^10/10 + ... RELATED SERIES. exp(A(x)) = 1 + 2*x + 7*x^2/2! + 82*x^3/3! + 3413*x^4/4! + 310306*x^5/5! + 47180827*x^6 + 10609392242*x^7/7! + 3284088709897*x^8/8! + 1333647722701378*x^9/9! + ... + A319144(n)*x^n/n! +... ILLUSTRATION OF DEFINITION. The table of coefficients of x^k/k! in exp(n^2*x - n*A(x)) begins n=1: [1, -1, -2, -48, -2616, -262080, -41718240, -9630270720, ...]; n=2: [1, 0, -6, -112, -5592, -547968, -86345120, -19809990912, ...]; n=3: [1, 3, 0, -222, -10728, -958824, -144971712, -32519314080, ...]; n=4: [1, 8, 52, 0, -18648, -1693248, -236690784, -50727983616, ...]; n=5: [1, 15, 210, 2420, 0, -2739720, -399251600, -80125144800, ...]; n=6: [1, 24, 558, 12192, 221184, 0, -616918320, -131299591680, ...]; n=7: [1, 35, 1204, 40278, 1272768, 33597312, 0, -196436730672, ...]; n=8: [1, 48, 2280, 106688, 4869552, 210771456, 7654459648, 0, ...]; ... in which the n-th term in row n forms a diagonal of zeros after an initial '1'. ODD TERMS. The odd terms occur at positions 2^k for k >= 1, and begin: a(2) = 3, a(4) = 475, a(8) = 617990499, a(16) = 424930120163186457909923, a(32) = 14084628818669848855677925942788864036579283666486658556963, ... PROG (PARI) {a(n) = my(A=[1], L=[2]); for(m=1, n+1, A=concat(A, 0); A[m] = Vec( exp(m^2*x +x*O(x^n))/Ser(A)^(m) )[m]/m ); L=Vec(Ser(A)'/Ser(A)); L[n]} for(n=1, 21, print1(a(n), ", ")) CROSSREFS Cf. A319144, A317344. Sequence in context: A206592 A126266 A219975 * A206591 A003017 A096580 Adjacent sequences: A319143 A319144 A319145 * A319147 A319148 A319149 KEYWORD nonn AUTHOR Paul D. Hanna, Sep 18 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 08:30 EDT 2024. Contains 372814 sequences. (Running on oeis4.)