login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319146
L.g.f. A(x) satisfies: [x^(n-1)] exp( n^2*x - n*A(x) ) = 0 for n>1.
2
2, 3, 28, 475, 11556, 362418, 13820696, 617990499, 31613351140, 1817581003238, 115889207486856, 8109201377360590, 617515197617355688, 50821356562425738180, 4494201727819787034288, 424930120163186457909923, 42774475244179902914458980, 4567011383256552019018866462, 515499978801248295048365872680, 61333960606400043841174213941210, 7671985428777785517888000656381240
OFFSET
1,1
COMMENTS
a(2^k) is odd for k >= 1, and a(n) is even elsewhere.
LINKS
FORMULA
a(n) ~ sqrt(1-c) * 2^(2*n - 3/2) * n^(n - 1/2) / (sqrt(Pi) * exp(n) * c^n * (2-c)^(n-1)), where c = -LambertW(-2*exp(-2)) = -A226775. - Vaclav Kotesovec, Aug 11 2021
EXAMPLE
L.g.f., A(x) = Sum_{n>=1} a(n)*x^n/n, begins
A(x) = 2*x + 3*x^2/2 + 28*x^3/3 + 475*x^4/4 + 11556*x^5/5 + 362418*x^6/6 + 13820696*x^7/7 + 617990499*x^8/8 + 31613351140*x^9/9 + 1817581003238*x^10/10 + ...
RELATED SERIES.
exp(A(x)) = 1 + 2*x + 7*x^2/2! + 82*x^3/3! + 3413*x^4/4! + 310306*x^5/5! + 47180827*x^6 + 10609392242*x^7/7! + 3284088709897*x^8/8! + 1333647722701378*x^9/9! + ... + A319144(n)*x^n/n! +...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k/k! in exp(n^2*x - n*A(x)) begins
n=1: [1, -1, -2, -48, -2616, -262080, -41718240, -9630270720, ...];
n=2: [1, 0, -6, -112, -5592, -547968, -86345120, -19809990912, ...];
n=3: [1, 3, 0, -222, -10728, -958824, -144971712, -32519314080, ...];
n=4: [1, 8, 52, 0, -18648, -1693248, -236690784, -50727983616, ...];
n=5: [1, 15, 210, 2420, 0, -2739720, -399251600, -80125144800, ...];
n=6: [1, 24, 558, 12192, 221184, 0, -616918320, -131299591680, ...];
n=7: [1, 35, 1204, 40278, 1272768, 33597312, 0, -196436730672, ...];
n=8: [1, 48, 2280, 106688, 4869552, 210771456, 7654459648, 0, ...]; ...
in which the n-th term in row n forms a diagonal of zeros after an initial '1'.
ODD TERMS.
The odd terms occur at positions 2^k for k >= 1, and begin:
a(2) = 3,
a(4) = 475,
a(8) = 617990499,
a(16) = 424930120163186457909923,
a(32) = 14084628818669848855677925942788864036579283666486658556963, ...
PROG
(PARI) {a(n) = my(A=[1], L=[2]); for(m=1, n+1, A=concat(A, 0); A[m] = Vec( exp(m^2*x +x*O(x^n))/Ser(A)^(m) )[m]/m ); L=Vec(Ser(A)'/Ser(A)); L[n]}
for(n=1, 21, print1(a(n), ", "))
CROSSREFS
Sequence in context: A206592 A126266 A219975 * A206591 A003017 A096580
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 18 2018
STATUS
approved