login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319145
E.g.f. A = A(x,m) satisfies: cn(A + x, m) + sn(A - x, m) = 1, where sn(x,m) and cn(x,m) are Jacobi elliptic functions with parameter m, as an irregular triangle of coefficients read by rows.
1
1, 4, 24, 0, 224, -64, 2880, -1920, 0, 48064, -49984, 1024, 989184, -1365504, 129024, 0, 24218624, -40854528, 8583168, -16384, 687083520, -1352540160, 471859200, -8355840, 0, 22151148544, -49507063808, 24589796352, -1331806208, 262144, 799546834944, -1993321955328, 1286051069952, -141582532608, 536346624, 0, 31934834253824, -87721489006592, 69349000355840, -12549922078720, 198078103552, -4194304
OFFSET
1,2
FORMULA
E.g.f. A = A(x,m) = Sum_{n>=1} Sum_{k=0..floor((n-1)/2)} T(n,k)*x^n*m^k/n! satisfies:
(1) A(-A(-x, m), m) = x.
(2) 1 = cn(A + x, m) + sn(A - x, m).
(3) (cn(A) + sn(A)*dn(x)) * (cn(x) - sn(x)*dn(A)) = 1 - m*sn(x)^2*sn(A)^2, where parameter m is implicit.
EXAMPLE
E.g.f.: A(x,m) = x + 4*x^2/2! + 24*x^3/3! + (-64*m + 224)*x^4/4! + (-1920*m + 2880)*x^5/5! + (1024*m^2 - 49984*m + 48064)*x^6/6! + (129024*m^2 - 1365504*m + 989184)*x^7/7! + (-16384*m^3 + 8583168*m^2 - 40854528*m + 24218624)*x^8/8! + (-8355840*m^3 + 471859200*m^2 - 1352540160*m + 687083520)*x^9/9! + (262144*m^4 - 1331806208*m^3 + 24589796352*m^2 - 49507063808*m + 22151148544)*x^10/10! + (536346624*m^4 - 141582532608*m^3 + 1286051069952*m^2 - 1993321955328*m + 799546834944)*x^11/11! + (-4194304*m^5 + 198078103552*m^4 - 12549922078720*m^3 + 69349000355840*m^2 - 87721489006592*m + 31934834253824)*x^12/12! + ...
such that cn(A + x, m) + sn(A - x, m) = 1.
This triangle of coefficients of x^n*m^k/n! in A(x,m) begins
1;
4;
24, 0;
224, -64;
2880, -1920, 0;
48064, -49984, 1024;
989184, -1365504, 129024, 0;
24218624, -40854528, 8583168, -16384;
687083520, -1352540160, 471859200, -8355840, 0;
22151148544, -49507063808, 24589796352, -1331806208, 262144;
799546834944, -1993321955328, 1286051069952, -141582532608, 536346624, 0;
31934834253824, -87721489006592, 69349000355840, -12549922078720, 198078103552, -4194304; ...
RELATED SERIES.
cn(A(x,m) + x, m) = 1 - 4*x^2/2! - 24*x^3/3! + (64*m - 224)*x^4/4! + (1920*m - 2880)*x^5/5! + (-1024*m^2 + 50944*m - 47104)*x^6/6! + (-129024*m^2 + 1405824*m - 948864)*x^7/7! + (16384*m^3 - 8798208*m^2 + 42037248*m - 22820864)*x^8/8! + (8355840*m^3 - 491212800*m^2 + 1381570560*m - 638699520)*x^9/9! + (-262144*m^4 + 1367932928*m^3 - 25781010432*m^2 + 50035417088*m - 20383842304)*x^10 + ...
sn(A(x,m) - x, m) = 1 - cn(A(x,m) + x, m) = 4*x^2/2! + 24*x^3/3! + (-64*m + 224)*x^4/4! + (-1920*m + 2880)*x^5/5! + (1024*m^2 - 50944*m + 47104)*x^6/6! + (129024*m^2 - 1405824*m + 948864)*x^7/7! + ...
Related Jacobi elliptic functions with parameter m begin:
sn(x,m) = x + (-m - 1)*x^3/3! + (m^2 + 14*m + 1)*x^5/5! + (-m^3 - 135*m^2 - 135*m - 1)*x^7/7! + (m^4 + 1228*m^3 + 5478*m^2 + 1228*m + 1)*x^9/9! + (-m^5 - 11069*m^4 - 165826*m^3 - 165826*m^2 - 11069*m - 1)*x^11/11! + ...
cn(x,m) = 1 - x^2/2! + (4*m + 1)*x^4/4! + (-16*m^2 - 44*m - 1)*x^6/6! + (64*m^3 + 912*m^2 + 408*m + 1)*x^8/8! + (-256*m^4 - 15808*m^3 - 30768*m^2 - 3688*m - 1)*x^10/10! + (1024*m^5 + 259328*m^4 + 1538560*m^3 + 870640*m^2 + 33212*m + 1)*x^12/12! + ...
dn(x,m) = 1 - m*x^2/2! + (m^2 + 4*m)*x^4/4! + (-m^3 - 44*m^2 - 16*m)*x^6/6! + (m^4 + 408*m^3 + 912*m^2 + 64*m)*x^8/8! + (-m^5 - 3688*m^4 - 30768*m^3 - 15808*m^2 - 256*m)*x^10/10! + (m^6 + 33212*m^5 + 870640*m^4 + 1538560*m^3 + 259328*m^2 + 1024*m)*x^12/12! + ...
PROG
(PARI) {T(n, k) = my(A=[1], S=x, C=1, D=1); for(i=0, n,
S = intformal(C*D +x*O(x^n));
C = 1 - intformal(S*D) ;
D = 1 - m*intformal(S*C); );
for(i=1, n, A=concat(A, 0);
A[#A] = -Vec( subst(C, x, x*Ser(A) + x) + subst(S, x, x*Ser(A) - x) )[#A+1] );
n!*polcoeff(polcoeff(A, n, x), k, m)}
/* Print as a triangle: */
for(n=1, 12, for(k=0, (n-1)\2, print1(T(n, k), ", ")); print(""))
CROSSREFS
Cf. A318005 (column 0).
Sequence in context: A317211 A145514 A305665 * A024543 A010294 A350887
KEYWORD
sign,tabf
AUTHOR
Paul D. Hanna, Sep 11 2018
STATUS
approved