login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319142
Total number of binary digits in the partitions of n into odd parts.
2
1, 2, 5, 7, 12, 19, 26, 36, 52, 71, 92, 124, 158, 204, 265, 331, 413, 522, 641, 791, 976, 1184, 1435, 1741, 2093, 2506, 3005, 3574, 4237, 5030, 5928, 6971, 8202, 9593, 11212, 13087, 15210, 17653, 20472, 23665, 27308, 31488, 36205, 41570, 47701, 54584, 62387
OFFSET
1,2
LINKS
MAPLE
h:= proc(n) option remember; 1+ilog2(n) end:
b:= proc(n, i) option remember; `if`(n=0, [1, 0],
`if`(i<1, 0, b(n, i-1-irem(i, 2))+`if`(i::even
or i>n, 0, (p-> p+[0, p[1]*h(i)])(b(n-i, i)))))
end:
a:= n-> b(n$2)[2]:
seq(a(n), n=1..60); # Alois P. Heinz, Sep 27 2018
MATHEMATICA
h[n_] := h[n] = 1 + Floor@Log[2, n];
b[n_, i_] := b[n, i] = If[n==0, {1, 0}, If[i<1, 0, b[n, i-1-Mod[i, 2]] + If[EvenQ[i] || i>n, 0, Function[p, p + {0, p[[1]] h[i]}][b[n - i, i]]]]];
a[n_] := b[n, n][[2]];
Array[a, 60] (* Jean-François Alcover, Dec 12 2020, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A005895 A238661 A135525 * A350497 A117538 A001060
KEYWORD
nonn
AUTHOR
David S. Newman, Sep 11 2018
STATUS
approved