The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A238661 Number of partitions of n having standard deviation σ > 2. 8
 0, 0, 0, 0, 0, 0, 1, 2, 5, 7, 12, 18, 29, 42, 61, 85, 118, 164, 223, 299, 399, 530, 693, 888, 1157, 1488, 1901, 2403, 3044, 3807, 4783, 5935, 7368, 9097, 11197, 13721, 16806, 20441, 24868, 30133, 36494, 43895, 52880, 63424, 75900, 90609, 108088, 128404 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,8 COMMENTS Regarding "standard deviation" see Comments at A238616. LINKS Table of n, a(n) for n=1..48. FORMULA a(n) + A238659(n) = A000041(n). EXAMPLE There are 22 partitions of 8, whose standard deviations are given by these approximations: 0., 3., 2., 2.35702, 1., 1.69967, 1.73205, 0., 1.24722, 0.942809, 1.22474, 1.2, 0.471405, 1., 0.707107, 0.8, 0.745356, 0., 0.489898, 0.471405, 0.349927, 0, so that a(8) = 2. MATHEMATICA z = 50; g[n_] := g[n] = IntegerPartitions[n]; c[t_] := c[t] = Length[t]; s[t_] := s[t] = Sqrt[Sum[(t[[k]] - Mean[t])^2, {k, 1, c[t]}]/c[t]]; Table[Count[g[n], p_ /; s[p] < 2], {n, z}] (*A238658*) Table[Count[g[n], p_ /; s[p] <= 2], {n, z}] (*A238659*) Table[Count[g[n], p_ /; s[p] == 2], {n, z}] (*A238660*) Table[Count[g[n], p_ /; s[p] > 2], {n, z}] (*A238661*) Table[Count[g[n], p_ /; s[p] >= 2], {n, z}] (*A238662*) t[n_] := t[n] = N[Table[s[g[n][[k]]], {k, 1, PartitionsP[n]}]] ListPlot[Sort[t[30]]] (*plot of st deviations of partitions of 30*) CROSSREFS Cf. A238616, A238658-A238660, A238662. Sequence in context: A023564 A173088 A005895 * A135525 A319142 A350497 Adjacent sequences: A238658 A238659 A238660 * A238662 A238663 A238664 KEYWORD nonn,easy AUTHOR Clark Kimberling, Mar 03 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 00:39 EDT 2024. Contains 372806 sequences. (Running on oeis4.)