The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A238661 Number of partitions of n having standard deviation σ > 2. 8
0, 0, 0, 0, 0, 0, 1, 2, 5, 7, 12, 18, 29, 42, 61, 85, 118, 164, 223, 299, 399, 530, 693, 888, 1157, 1488, 1901, 2403, 3044, 3807, 4783, 5935, 7368, 9097, 11197, 13721, 16806, 20441, 24868, 30133, 36494, 43895, 52880, 63424, 75900, 90609, 108088, 128404 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,8
COMMENTS
Regarding "standard deviation" see Comments at A238616.
LINKS
FORMULA
a(n) + A238659(n) = A000041(n).
EXAMPLE
There are 22 partitions of 8, whose standard deviations are given by these approximations: 0., 3., 2., 2.35702, 1., 1.69967, 1.73205, 0., 1.24722, 0.942809, 1.22474, 1.2, 0.471405, 1., 0.707107, 0.8, 0.745356, 0., 0.489898, 0.471405, 0.349927, 0, so that a(8) = 2.
MATHEMATICA
z = 50; g[n_] := g[n] = IntegerPartitions[n]; c[t_] := c[t] = Length[t]; s[t_] := s[t] = Sqrt[Sum[(t[[k]] - Mean[t])^2, {k, 1, c[t]}]/c[t]];
Table[Count[g[n], p_ /; s[p] < 2], {n, z}] (*A238658*)
Table[Count[g[n], p_ /; s[p] <= 2], {n, z}] (*A238659*)
Table[Count[g[n], p_ /; s[p] == 2], {n, z}] (*A238660*)
Table[Count[g[n], p_ /; s[p] > 2], {n, z}] (*A238661*)
Table[Count[g[n], p_ /; s[p] >= 2], {n, z}] (*A238662*)
t[n_] := t[n] = N[Table[s[g[n][[k]]], {k, 1, PartitionsP[n]}]]
ListPlot[Sort[t[30]]] (*plot of st deviations of partitions of 30*)
CROSSREFS
Sequence in context: A023564 A173088 A005895 * A135525 A319142 A350497
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Mar 03 2014
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 26 00:39 EDT 2024. Contains 372806 sequences. (Running on oeis4.)