login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A350497
Sum of the largest parts in all the partitions of n into 3 parts whose largest part is greater than or equal to the product of the other two.
2
0, 0, 0, 1, 2, 5, 7, 12, 19, 27, 32, 48, 55, 68, 84, 109, 120, 149, 162, 196, 223, 249, 266, 323, 359, 392, 430, 484, 509, 586, 614, 678, 728, 775, 831, 952, 989, 1044, 1106, 1219, 1261, 1379, 1424, 1520, 1627, 1698, 1748, 1919, 2009, 2124, 2213, 2332, 2392, 2552, 2655, 2827
OFFSET
0,5
FORMULA
a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} sign(floor((n-i-k)/(i*k))) * (n-i-k).
EXAMPLE
a(7) = 12 since we have 7 = 1+1+5 = 1+2+4 = 1+3+3, and the sum of the largest parts in each partition is 5+4+3 = 12. The partition 2+2+3 is not included since 2*2 > 3.
MATHEMATICA
Table[Sum[Sum[(n - i - k) Sign[Floor[(n - i - k)/(i*k)]], {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 100}]
Table[Total[Select[IntegerPartitions[n, {3}], #[[1]]>=Times@@Rest[#]&][[All, 1]]], {n, 0, 60}] (* Harvey P. Dale, Aug 22 2022 *)
PROG
(PARI) first(n) = my(res=vector(n, i, [0, 0])); for(i = 1, n\2, for(j = i, n\i, c = i + j + i * j; if(c <= n, res[c][1]++; res[c][2] += i*j))); forstep(i = n, 1, -1, for(j = i + 1, n, res[j][2] += ((j-i) * res[i][1] + res[i][2]))); concat(0, vector(#res, i, res[i][2])) \\ David A. Corneth, Jan 07 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Jan 03 2022
EXTENSIONS
a(0) = 0 prepended by David A. Corneth, Jan 09 2022
STATUS
approved