|
|
A350495
|
|
a(n) is the constant term in expansion of Product_{k=1..n} (x^(k^2) + 1/x^(k^2))^2.
|
|
2
|
|
|
1, 2, 4, 8, 16, 40, 88, 222, 570, 1564, 4516, 13874, 41866, 137432, 442964, 1492610, 4998674, 17204844, 59175316, 207299554, 727137516, 2582078416, 9179001124, 32943918428, 118453240846, 428937325964, 1556421977612, 5676923326262, 20754245720206
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
|
|
FORMULA
|
Conjecture: a(n) ~ sqrt(5) * 4^n / (sqrt(Pi) * n^(5/2)). - Vaclav Kotesovec, Feb 05 2022
|
|
MAPLE
|
b:= proc(n) option remember; `if`(n=0, 1,
expand((x^(n^2)+1/x^(n^2))^2*b(n-1)))
end:
a:= n-> coeff(b(n), x, 0):
|
|
MATHEMATICA
|
Table[Coefficient[Product[(x^(k^2) + 1/x^(k^2))^2, {k, 1, n}], x, 0], {n, 0, 30}] (* Vaclav Kotesovec, Feb 05 2022 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|