login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350493
a(n) = floor(sqrt(prime(n)))^2 mod n.
0
0, 1, 1, 0, 4, 3, 2, 0, 7, 5, 3, 0, 10, 8, 6, 1, 15, 13, 7, 4, 1, 20, 12, 9, 6, 22, 19, 16, 13, 10, 28, 25, 22, 19, 4, 0, 33, 30, 27, 9, 5, 1, 40, 37, 16, 12, 8, 4, 29, 25, 21, 17, 13, 9, 36, 32, 28, 24, 20, 16, 12, 41, 37, 33, 29, 25, 56, 52, 48, 44, 40, 36
OFFSET
1,5
FORMULA
a(n) = A065730(n) mod n.
EXAMPLE
a(4) = A065730(4) mod 4 = 4 mod 4 = 0;
a(5) = A065730(5) mod 5 = 9 mod 5 = 4;
a(6) = A065730(6) mod 6 = 9 mod 6 = 3;
a(7) = A065730(7) mod 7 = 16 mod 7 = 2.
MATHEMATICA
Table[PowerMod[Floor[Sqrt[Prime[n]]], 2, n], {n, 72}] (* Stefano Spezia, Jan 02 2022 *)
PROG
(PARI) a(n) = (sqrtint(prime(n))^2) % n;
vector(20, n, a(n))
(Ruby) require 'prime'
values = []
Prime.first(20).each_with_index do |prime, i|
values << ((Integer.sqrt(prime) ** 2) % (i + 1))
end
p values
(Python)
from sympy import prime, integer_nthroot
def a(n): return (integer_nthroot(prime(n), 2)[0]**2)%n
print([a(n) for n in range(1, 73)]) # Michael S. Branicky, Jan 02 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Simon Strandgaard, Jan 01 2022
STATUS
approved