The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A072670 Number of ways to write n as i*j + i + j, 0 < i <= j. 30
 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 1, 1, 2, 0, 2, 0, 2, 1, 1, 0, 3, 1, 1, 1, 2, 0, 3, 0, 2, 1, 1, 1, 4, 0, 1, 1, 3, 0, 3, 0, 2, 2, 1, 0, 4, 1, 2, 1, 2, 0, 3, 1, 3, 1, 1, 0, 5, 0, 1, 2, 3, 1, 3, 0, 2, 1, 3, 0, 5, 0, 1, 2, 2, 1, 3, 0, 4, 2, 1, 0, 5, 1, 1, 1, 3, 0, 5, 1, 2, 1, 1, 1, 5, 0, 2, 2, 4, 0, 3, 0, 3, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,12 COMMENTS a(n) is the number of partitions of n+1 with summands in arithmetic progression having common difference 2. For example a(29)=3 because there are 3 partitions of 30 that are in arithmetic progressions: 2+4+6+8+10, 8+10+12 and 14+16. - N-E. Fahssi, Feb 01 2008 From Daniel Forgues, Sep 20 2011: (Start) a(n) is the number of nontrivial factorizations of n+1, in two factors. a(n) is the number of ways to write n+1 as i*j + i + j + 1 = (i+1)(j+1), 0 < i <= j. (End) a(n) is the number of ways to write n+1 as i*j, 1 < i <= j. - Arkadiusz Wesolowski, Nov 18 2012 For a generalization, see comment in A260804. - Vladimir Shevelev, Aug 04 2015 Number of partitions of n into 3 parts whose largest part is equal to the product of the other two. - Wesley Ivan Hurt, Jan 04 2022 LINKS Robert Israel, Table of n, a(n) for n = 0..10000 J. W. Andrushkiw, R. I. Andrushkiw and C. E. Corzatt, Representations of Positive Integers as Sums of Arithmetic Progressions, Mathematics Magazine, Vol. 49, No. 5 (Nov., 1976), pp. 245-248. M. A. Nyblom and C. Evans, On the enumeration of partitions with summands in arithmetic progression, Australian Journal of Combinatorics, Vol. 28 (2003), pp. 149-159. Vladimir Shevelev, Representation of positive integers by the form x1...xk+x1+...+xk, arXiv:1508.03970 [math.NT], 2015. FORMULA a(n) = A038548(n+1) - 1. From N-E. Fahssi, Feb 01 2008: (Start) a(n) = p2(n+1), where p2(n) = (1/2)*(d(n) - 2 + ((-1)^(d(n)+1)+1)/2); d(n) is the number of divisors of n: A000005. G.f.: Sum_{n>=1} a(n) x^n = 1/x Sum_{k>=2} x^(k^2)/(1-x^k). (End) lim_{n->infinity} a(A002110(n)-1) = infinity. - Vladimir Shevelev, Aug 04 2015 a(n) = A161840(n+1)/2. - Omar E. Pol, Feb 27 2019 EXAMPLE a(11)=2: 11 = 1*5 + 1 + 5 = 2*3 + 2 + 3. From Daniel Forgues, Sep 20 2011 (Start) Number of nontrivial factorizations of n+1 in two factors: 0 for the unit 1 and prime numbers 1 for a square: n^2 = n*n 1 for 6 (2*3), 10 (2*5), 14 (2*7), 15 (3*5) 1 for a cube: n^3 = n*n^2 2 for 12 (2*6, 3*4), for 18 (2*9, 3*6) (End) MAPLE 0, seq(ceil(numtheory:-tau(n+1)/2)-1, n=1..100); # Robert Israel, Aug 04 2015 MATHEMATICA p2[n_] := 1/2 (Length[Divisors[n]] - 2 + ((-1)^(Length[Divisors[n]] + 1) + 1)/2); Table[p2[n + 1], {n, 0, 104}] (* N-E. Fahssi, Feb 01 2008 *) Table[Ceiling[DivisorSigma[0, n + 1]/2] - 1, {n, 0, 104}] (* Arkadiusz Wesolowski, Nov 18 2012 *) PROG (PARI) is_ok(k, i, j)=0=i&&k===i*j+i+j; first(m)=my(v=vector(m, z, 0)); for(l=1, m, for(j=1, l, for(i=1, j, if(is_ok(l, i, j), v[l]++)))); concat([0], v); /* Anders Hellström, Aug 04 2015 */ (PARI) a(n)=(numdiv(n+1)+issquare(n+1))/2-1 \\ Charles R Greathouse IV, Jul 14 2017 CROSSREFS Cf. A067432, A066938, A072668, A006093, A072671, A161840, A260803, A260804. Sequence in context: A114708 A084927 A333750 * A087624 A294891 A294879 Adjacent sequences: A072667 A072668 A072669 * A072671 A072672 A072673 KEYWORD nonn AUTHOR Reinhard Zumkeller, Jun 30 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 01:03 EST 2022. Contains 358594 sequences. (Running on oeis4.)