The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A238662 Number of partitions of n having population standard deviation >= 2. 9
 0, 0, 0, 0, 0, 1, 1, 3, 5, 9, 12, 20, 29, 43, 62, 88, 118, 169, 223, 306, 403, 532, 693, 907, 1160, 1490, 1910, 2423, 3044, 3845, 4783, 5957, 7401, 9104, 11209, 13805, 16806, 20449, 24920, 30223, 36494, 44022, 52880, 63511, 76003, 90631, 108088, 128708 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,8 COMMENTS Regarding "population standard deviation" see Comments at A238616. LINKS Table of n, a(n) for n=1..48. FORMULA a(n) + A238658(n) = A000041(n). EXAMPLE There are 22 partitions of 8, whose population standard deviations are given by these approximations: 0., 3., 2., 2.35702, 1., 1.69967, 1.73205, 0., 1.24722, 0.942809, 1.22474, 1.2, 0.471405, 1., 0.707107, 0.8, 0.745356, 0., 0.489898, 0.471405, 0.349927, 0, so that a(8) = 3. MAPLE b:= proc(n, i, m, s, c) `if`(n=0, `if`(s/c-(m/c)^2>=4, 1, 0), `if`(i=1, b(0\$2, m+n, s+n, c+n), add(b(n-i*j, i-1, m+i*j, s+i^2*j, c+j), j=0..n/i))) end: a:= n-> b(n\$2, 0\$3): seq(a(n), n=1..50); # Alois P. Heinz, Mar 11 2014 MATHEMATICA z = 50; g[n_] := g[n] = IntegerPartitions[n]; c[t_] := c[t] = Length[t]; s[t_] := s[t] = Sqrt[Sum[(t[[k]] - Mean[t])^2, {k, 1, c[t]}]/c[t]]; Table[Count[g[n], p_ /; s[p] < 2], {n, z}] (*A238658*) Table[Count[g[n], p_ /; s[p] <= 2], {n, z}] (*A238659*) Table[Count[g[n], p_ /; s[p] == 2], {n, z}] (*A238660*) Table[Count[g[n], p_ /; s[p] > 2], {n, z}] (*A238661*) Table[Count[g[n], p_ /; s[p] >= 2], {n, z}] (*A238662*) t[n_] := t[n] = N[Table[s[g[n][[k]]], {k, 1, PartitionsP[n]}]] ListPlot[Sort[t[30]]] (* plot of st deviations of partitions of 30 *) (* Second program: *) b[n_, i_, m_, s_, c_] := b[n, i, m, s, c] = If[n == 0, If[s/c - (m/c)^2 >= 4, 1, 0], If[i == 1, b[0, 0, m + n, s + n, c + n], Sum[b[n - i*j, i - 1, m + i*j, s + i^2*j, c + j], {j, 0, n/i}]]]; a[n_] := b[n, n, 0, 0, 0]; Array[a, 50] (* Jean-François Alcover, May 27 2021, after Alois P. Heinz *) CROSSREFS Cf. A238616, A238658, A238660, A238661. Sequence in context: A046746 A344715 A058599 * A365272 A059093 A084593 Adjacent sequences: A238659 A238660 A238661 * A238663 A238664 A238665 KEYWORD nonn AUTHOR Clark Kimberling, Mar 03 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 16:11 EDT 2024. Contains 372832 sequences. (Running on oeis4.)