The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A046746 Sum of smallest parts of all partitions of n. 48
 0, 1, 3, 5, 9, 12, 20, 25, 38, 49, 69, 87, 123, 152, 205, 260, 341, 425, 555, 687, 882, 1094, 1380, 1702, 2140, 2620, 3254, 3982, 4907, 5967, 7318, 8856, 10787, 13019, 15759, 18943, 22840, 27334, 32794, 39139, 46758, 55595, 66182, 78433, 93021, 109935, 129922 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Also total number of largest parts in all partitions of n. - Vladeta Jovovic, Feb 16 2004 To see this, consider the properties of a partition related through conjugation, such as the total number of parts and the size of the largest parts. The sums over all of the partitions of n of these two properties are equal. The size of the smallest part and the number of largest parts are two such properties (this is immediate when looking at the Ferrers diagram). - Michael Donatz, Apr 17 2011 Starting with offset 1, = the partition triangle A026794 * [1, 2, 3, ...]. - Gary W. Adamson, Feb 13 2008 For n >= 1, a(n) =  T(n+1,1) + T(n+2,2) + T(n+3,3)+ ... (sum along a falling diagonal) of the partition triangle A026794. - Bob Selcoe, Jun 22 2013 LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..20000 (terms 0..10000 from Alois P. Heinz) P. J. Grabner, A. Knopfmacher, Analysis of some new partition statistics, Ramanujan J., 12, 2006, 439-454. FORMULA G.f.: Sum_{k>=1} k*z^k/Product_{i>=0} (1-z^(k+i)). - Vladeta Jovovic, Jun 22 2003 G.f.: Sum_{k>=1} (-1 + 1/Product_{i>=0} (1-z^(k+i))). - Vladeta Jovovic, Jun 22 2003 [Cannot verify, Joerg Arndt, Apr 17 2011] G.f.: Sum_{j>=1} (x^j/(1-x^j))/Product_{i=1..j} (1-x^i). - Vladeta Jovovic, Aug 11 2004 [Cannot verify, Joerg Arndt, Apr 17 2011] G.f.: Sum_{k >= 1} (-1 + z^k/(1-z^k)(1-z^{k+1})(1-z^{k+2})...). - Don Knuth, Aug 08 2002 [Cannot verify, Joerg Arndt, Apr 17 2011] G.f.: Sum_{n>=1} (x^n/(1-x^n)) / Product_{k=1..n} (1-x^k). - Joerg Arndt, May 26 2012 a(n) = A066186(n) - A066186(n-1) - A182709(n), n >= 1. - Omar E. Pol, Aug 01 2013 a(n) ~ exp(Pi*sqrt(2*n/3)) / (4*sqrt(3)*n) * (1 + (23*Pi/(24*sqrt(6)) - sqrt(3/2)/Pi)/sqrt(n) + (1681*Pi^2/6912 - 23/16)/n). - Vaclav Kotesovec, Jul 06 2019 EXAMPLE For n = 4 the five partitions of 4 are 4, 2+2, 3+1, 2+1+1, 1+1+1+1, therefore the smallest parts of all partitions of 4 are 4, 2, 1, 1, 1 and the sum is 4+2+1+1+1 = 9, so a(4) = 9. - Omar E. Pol, Aug 02 2013 MAPLE b:= proc(n, i) option remember;       `if`(n=i, n, 0) +`if`(i<1, 0, b(n, i-1) +`if`(n b(n, n): seq(a(n), n=0..100);  # Alois P. Heinz, Mar 28 2012 MATHEMATICA f[n_] := Plus @@ Min /@ IntegerPartitions@ n; Array[f, 45, 0] (* Robert G. Wilson v, Apr 12 2011 *) b[n_, i_] := b[n, i] = If[n==i, n, 0] + If[i<1, 0, b[n, i-1] + If[n

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 20 11:10 EDT 2021. Contains 345164 sequences. (Running on oeis4.)