OFFSET
0,3
COMMENTS
Sum of the zeroth moments of all partitions of n.
Also the number of one-element transitions from the integer partitions of n to the partitions of n-1 for labeled parts with the assumption that any part z is composed of labeled elements of amount 1, i.e., z = 1_1 + 1_2 + ... + 1_z. Then one can take from z a single element in z different ways. E.g., for n=3 to n=2 we have A066186(3) = 9 and [111] --> [11], [111] --> [11], [111] --> [11], [12] --> [111], [12] --> [111], [12] --> [2], [3] --> 2, [3] --> 2, [3] --> 2. For the unlabeled case, one can take a single element from z in only one way. Then the number of one-element transitions from the integer partitions of n to the partitions of n-1 is given by A000070. E.g., A000070(3) = 4 and for the transition from n=3 to n=2 one has [111] --> [11], [12] --> [11], [12] --> [2], [3] --> [2]. - Thomas Wieder, May 20 2004
Also sum of all parts of all regions of n (Cf. A206437). - Omar E. Pol, Jan 13 2013
From Omar E. Pol, Jan 19 2021: (Start)
Apart from initial zero this is also as follows:
For n >= 1, a(n) is also the number of cells in a symmetric polycube in which the terraces are the symmetric representation of sigma(k), for k = n..1, (cf. A237593) starting from the base and located at the levels A000041(0)..A000041(n-1) respectively. The polycube looks like a symmetric tower (cf. A221529). A dissection is a three-dimensional spiral whose top view is described in A239660. The growth of the volume of the polycube represents each convolution mentioned above. (End)
From Omar E. Pol, Feb 04 2021: (Start)
a(n) is also the sum of all divisors of all positive integers in a sequence with n blocks where the m-th block consists of A000041(n-m) copies of m, with 1 <= m <= n. The mentioned divisors are also all parts of all partitions of n.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
F. G. Garvan, Higher-order spt functions, Adv. Math. 228 (2011), no. 1, 241-265, alternate copy. - From N. J. A. Sloane, Jan 02 2013
F. G. Garvan, Higher-order spt functions, arXiv:1008.1207 [math.NT], 2010.
T. J. Osler, A. Hassen and T. R. Chandrupatia, Surprising connections between partitions and divisors, The College Mathematics Journal, Vol. 38. No. 4, Sep. 2007, 278-287 (see p. 287).
Omar E. Pol, Illustration of a(10), prism and tower, each polycube contains 420 cubes.
FORMULA
a(n) = n * A000041(n). - Omar E. Pol, Oct 10 2011
G.f.: x * (d/dx) Product_{k>=1} 1/(1-x^k), i.e., derivative of g.f. for A000041. - Jon Perry, Mar 17 2004 (adjusted to match the offset by Geoffrey Critzer, Nov 29 2014)
Equals A132825 * [1, 2, 3, ...]. - Gary W. Adamson, Sep 02 2007
a(n) = A220909(n)/2. - Omar E. Pol, Jan 13 2013
a(n) = Sum_{k=1..n} k*A036043(n,n-k+1). - L. Edson Jeffery, Aug 03 2013
a(n) ~ exp(Pi*sqrt(2*n/3))/(4*sqrt(3)) * (1 - (sqrt(3/2)/Pi + Pi/(24*sqrt(6))) / sqrt(n)). - Vaclav Kotesovec, Oct 24 2016
EXAMPLE
a(3)=9 because the partitions of 3 are: 3, 2+1 and 1+1+1; and (3) + (2+1) + (1+1+1) = 9.
a(4)=20 because A000041(4)=5 and 4*5=20.
MAPLE
with(combinat): a:= n-> n*numbpart(n): seq(a(n), n=0..50); # Zerinvary Lajos, Apr 25 2007
MATHEMATICA
PartitionsP[ Range[0, 60] ] * Range[0, 60]
PROG
(PARI) a(n)=numbpart(n)*n \\ Charles R Greathouse IV, Mar 10 2012
(Haskell)
a066186 = sum . concat . ps 1 where
ps _ 0 = [[]]
ps i j = [t:ts | t <- [i..j], ts <- ps t (j - t)]
-- Reinhard Zumkeller, Jul 13 2013
(Sage)
[n*Partitions(n).cardinality() for n in range(41)] # Peter Luschny, Jul 29 2014
(Python)
from sympy import npartitions
def A066186(n): return n*npartitions(n) # Chai Wah Wu, Oct 22 2023
CROSSREFS
Cf. A000041, A093694, A000070, A132825, A001787 (same for ordered partitions), A277029, A000203, A221529, A237593, A239660.
First differences give A138879. - Omar E. Pol, Aug 16 2013
KEYWORD
easy,nonn,nice
AUTHOR
Wouter Meeussen, Dec 15 2001
EXTENSIONS
a(0) added by Franklin T. Adams-Watters, Jul 28 2014
STATUS
approved