

A066186


Sum of all parts of all partitions of n.


150



0, 1, 4, 9, 20, 35, 66, 105, 176, 270, 420, 616, 924, 1313, 1890, 2640, 3696, 5049, 6930, 9310, 12540, 16632, 22044, 28865, 37800, 48950, 63336, 81270, 104104, 132385, 168120, 212102, 267168, 334719, 418540, 520905, 647172, 800569, 988570, 1216215, 1493520
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

Sum of the zeroth moments of all partitions of n.
Also the number of oneelement transitions from the integer partitions of n to the partitions of n1 for labeled parts with the assumption that any part z is composed of labeled elements of amount 1, i.e., z = 1_1 + 1_2 +... + 1_z. Then one can take from z a single element in z different ways. E.g., for n=3 to n=2 we have A066186(3) = 9 and [111] > [11], [111] > [11], [111] > [11], [12] > [111], [12] > [111], [12] > [2], [3] > 2, [3] > 2, [3] > 2. For the unlabeled case, one can take a single element from z in only one way. Then the number of oneelement transitions from the integer partitions of n to the partitions of n1 is given by A000070. E.g., A000070(3) = 4 and for the transition from n=3 to n=2 one has [111] > [11], [12] > [11], [12] > [2], [3] > [2].  Thomas Wieder, May 20 2004
Row sums of triangle A138785 and of triangle A181187.  Omar E. Pol, Feb 26 2012
Also sum of all parts of all regions of n (Cf. A206437).  Omar E. Pol, Jan 13 2013
Row sums of triangle A221529.  Omar E. Pol, Jan 21 2013
First differences give A138879.  Omar E. Pol, Aug 16 2013
From Omar E. Pol, Jan 19 2020: (Start)
Apart from initial zero this is also as follows:
Convolution of A000203 and A000041 (see formula dated Jan 20 2013).
Convolution of A024916 and A002865 (see formula dated Jul 13 2014).
Row sums of triangles A245099, A337209, A339106, A340423, A340424.
For n >= 1, a(n) is also the number of cells in a symmetric polycube in which the terraces are the symmetric representation of sigma(k), for k = n..1, (cf. A237593) starting from the base and located at the levels A000041(0)..A000041(n1) respectively. The polycube looks like a tower or skyscraper. A dissection is a threedimensional spiral whose top view is described in A239660. The growth of the volume of the polycube represents each convolution mentioned above. (End)


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000
F. G. Garvan, Higherorder spt functions, Adv. Math. 228 (2011), no. 1, 241265, alternate copy.  From N. J. A. Sloane, Jan 02 2013
F. G. Garvan, Higherorder spt functions, arXiv:1008.1207 [math.NT], 2010.
Omar E. Pol, Illustration of initial terms of A066186 and of A139582 (n>=1)


FORMULA

a(n) = n * A000041(n).  Omar E. Pol, Oct 10 2011
G.f. = x*d/dx [prod_{k>0} 1/(1x^k)], i.e., derivative of g.f. for A000041.  Jon Perry, Mar 17 2004 (adjusted to match the offset by Geoffrey Critzer, Nov 29 2014)
Equals A132825 * [1, 2, 3,...].  Gary W. Adamson, Sep 02 2007
a(n) = A066967(n) + A066966(n).  Omar E. Pol, Mar 10 2012
a(n) = A207381(n) + A207382(n).  Omar E. Pol, Mar 13 2012
a(n) = A006128(n) + A196087(n).  Omar E. Pol, Apr 22 2012
a(n) = A220909(n)/2.  Omar E. Pol, Jan 13 2013
a(n) = Sum_{k=1..n} A000203(k)*A000041(nk), n >= 1.  Omar E. Pol, Jan 20 2013
a(n) = Sum_{k=1..n} k*A036043(n,nk+1).  L. Edson Jeffery, Aug 03 2013
a(n) = Sum_{k=1..n} A024916(k)*A002865(nk), n >= 1.  Omar E. Pol, Jul 13 2014
a(n) ~ exp(Pi*sqrt(2*n/3))/(4*sqrt(3)) * (1  (sqrt(3/2)/Pi + Pi/(24*sqrt(6))) / sqrt(n)).  Vaclav Kotesovec, Oct 24 2016


EXAMPLE

a(3)=9 because the partitions of 3 are: 3, 2+1 and 1+1+1; and (3) + (2+1) + (1+1+1) = 9.
a(4)=20 because A000041(4)=5 and 4*5=20.


MAPLE

with(combinat): a:= n> n*numbpart(n): seq(a(n), n=0..50); # Zerinvary Lajos, Apr 25 2007


MATHEMATICA

PartitionsP[ Range[0, 60] ] * Range[0, 60]


PROG

(PARI) a(n)=numbpart(n)*n \\ Charles R Greathouse IV, Mar 10 2012
(Haskell)
a066186 = sum . concat . ps 1 where
ps _ 0 = [[]]
ps i j = [t:ts  t < [i..j], ts < ps t (j  t)]
 Reinhard Zumkeller, Jul 13 2013
(Sage)
[n*Partitions(n).cardinality() for n in range(41)] # Peter Luschny, Jul 29 2014


CROSSREFS

Cf. A000041, A093694, A000070, A132825, A001787 (same for ordered partitions), A277029, A000203, A237593, A239660.
Sequence in context: A241944 A256054 A164931 * A059403 A009909 A009910
Adjacent sequences: A066183 A066184 A066185 * A066187 A066188 A066189


KEYWORD

easy,nonn,nice,changed


AUTHOR

Wouter Meeussen, Dec 15 2001


EXTENSIONS

a(0) added by Franklin T. AdamsWatters, Jul 28 2014


STATUS

approved



