login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277029
Convolution of A000203 and A000009.
4
0, 1, 4, 8, 16, 25, 42, 61, 90, 130, 178, 242, 332, 436, 566, 747, 952, 1210, 1540, 1926, 2400, 2994, 3674, 4506, 5526, 6708, 8108, 9808, 11768, 14080, 16850, 20022, 23738, 28128, 33152, 39015, 45854, 53662, 62696, 73166, 85118, 98826, 114636, 132586, 153102
OFFSET
0,3
COMMENTS
Apart from initial zero this is the convolution of A340793 and A036469. - Omar E. Pol, Feb 16 2021
LINKS
FORMULA
G.f.: Sum_{j>=1} (j*x^j/(1-x^j))*Product_{k>=1} (1+x^k).
a(n) ~ 2*n*A000009(n) ~ exp(Pi*sqrt(n/3)) * n^(1/4) / (2*3^(1/4)).
MATHEMATICA
Table[Sum[DivisorSigma[1, k] * PartitionsQ[n-k], {k, 1, n}], {n, 0, 50}]
nmax = 50; CoefficientList[Series[Sum[j*x^j/(1-x^j), {j, 1, nmax}]*Product[1+x^k, {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
Cf. A066186 (convolution of A000203 and A000041).
Cf. A276432 (convolution of A000203 and A000219).
Sequence in context: A290190 A193452 A003451 * A013934 A167189 A050470
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Sep 25 2016
STATUS
approved