login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A066189 Sum of all partitions of n into distinct parts. 21
0, 1, 2, 6, 8, 15, 24, 35, 48, 72, 100, 132, 180, 234, 308, 405, 512, 646, 828, 1026, 1280, 1596, 1958, 2392, 2928, 3550, 4290, 5184, 6216, 7424, 8880, 10540, 12480, 14784, 17408, 20475, 24048, 28120, 32832, 38298, 44520, 51660, 59892, 69230, 79904 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..10000

FORMULA

G.f.: sum(n>=1, n*q^(n-1)/(1+q^n) ) * prod(n>=1, 1+q^n ). - Joerg Arndt, Aug 03 2011

a(n) = n * A000009(n). - Vaclav Kotesovec, Sep 25 2016

G.f.: x*f'(x), where f(x) = Product_{k>=1} (1 + x^k). - Vaclav Kotesovec, Nov 21 2016

a(n) = A056239(A325506(n)). - Gus Wiseman, May 09 2019

EXAMPLE

The strict integer partitions of 6 are {(6), (5,1), (4,2), (3,2,1)} with sum 6+5+1+4+2+3+2+1 = 24. - Gus Wiseman, May 09 2019

MAPLE

b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i>n, [0$2],

      b(n, i+1)+(p-> p+[0, i*p[1]])(b(n-i, i+1))))

    end:

a:= n-> b(n, 1)[2]:

seq(a(n), n=0..80);  # Alois P. Heinz, Sep 01 2014

MATHEMATICA

PartitionsQ[ Range[ 60 ] ]Range[ 60 ]

nmax=60; CoefficientList[Series[x*D[Product[1+x^k, {k, 1, nmax}], x], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 21 2016 *)

CROSSREFS

Row sums of A026793, A118457, A246688, A325537.

Cf. A015723, A022629, A066186, A147655, A325504, A325505, A325506, A325513, A325515, A325537.

Sequence in context: A128913 A093005 A049818 * A278834 A306906 A174658

Adjacent sequences:  A066186 A066187 A066188 * A066190 A066191 A066192

KEYWORD

easy,nonn

AUTHOR

Wouter Meeussen, Dec 15 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 16 23:46 EDT 2019. Contains 328103 sequences. (Running on oeis4.)