login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A066191
Numbers n such that the sum of the odd aliquot parts of n divides n.
2
2, 3, 4, 5, 7, 8, 11, 12, 13, 16, 17, 19, 23, 24, 29, 31, 32, 37, 41, 43, 47, 48, 53, 56, 59, 61, 64, 67, 71, 73, 79, 83, 89, 96, 97, 101, 103, 107, 109, 112, 113, 120, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 192, 193, 197, 199, 211, 223
OFFSET
1,1
LINKS
EXAMPLE
12 is in the sequence because the odd aliquot parts of 12 are {1,3} and their sum divides 12.
MAPLE
with(numtheory):soa:=proc(n) local div, s, j: div:=convert(divisors(n), list): s:=0: for j from 1 to nops(div)-1 do if div[j] mod 2=1 then s:=s+div[j] else s:=s: fi: od: end: p:=proc(n) if type(n/soa(n), integer)=true then n else fi end: seq(p(n), n=1..240); # Emeric Deutsch, Feb 26 2005
MATHEMATICA
Do[ d = Drop[ Divisors[ n ], -1 ]; l = Length[ d ]; od = 1; k = 2; While[ k <= l, If[ OddQ[ d[ [ k ] ] ], od = od + d[ [ k ] ] ]; k++ ]; If[ IntegerQ[ n/od ], Print[ n ] ], {n, 2, 200} ]
PROG
(PARI) { n=0; for (m=2, 10^9, d=divisors(m); s=1; for (i=2, numdiv(m) - 1, if (d[i]%2, s += d[i])); if (s > 0 && m%s == 0, write("b066191.txt", n++, " ", m); if (n==1000, return)) ) } \\ Harry J. Smith, Feb 05 2010
(PARI) isok(n) = !(n % sumdiv(n, d, d*(d%2)*(d!=n))); \\ Michel Marcus, Apr 06 2015
CROSSREFS
Sequence in context: A100289 A255130 A054021 * A166159 A169693 A180121
KEYWORD
nonn,easy
AUTHOR
Robert G. Wilson v, Dec 15 2001
EXTENSIONS
More terms from Emeric Deutsch, Feb 26 2005
STATUS
approved