login
A325513
Heinz number of the integer partition whose parts are the multiplicities in the multiset union of all strict integer partitions of n.
9
1, 2, 2, 8, 8, 32, 144, 432, 2160, 27000, 582120, 7623000, 336936600, 6740402760, 543454231320, 57619849046760, 4683793138766280, 412882704970215480, 88171665744392750520, 12780536107937124847320, 2685589660883755945879560, 942036670625665177379096280
OFFSET
0,2
COMMENTS
Also the Heinz number of row n of A015716 (with zeros removed).
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
LINKS
FORMULA
a(n) = A181819(A003963(A325505(n))).
A056239(a(n)) = A015723(n).
EXAMPLE
The strict integer partitions of 6 are {(6), (5,1), (4,2), (3,2,1)}, with multiset union {1,1,2,2,3,4,5,6}, with multiplicities (2,2,1,1,1,1), so a(6) = prime(1)^4*prime(2)^2 = 144.
The sequence of terms together with their prime indices begins:
1: {}
2: {1}
2: {1}
8: {1,1,1}
8: {1,1,1}
32: {1,1,1,1,1}
144: {1,1,1,1,2,2}
432: {1,1,1,1,2,2,2}
2160: {1,1,1,1,2,2,2,3}
27000: {1,1,1,2,2,2,3,3,3}
582120: {1,1,1,2,2,2,3,4,4,5}
7623000: {1,1,1,2,2,3,3,3,4,5,5}
336936600: {1,1,1,2,2,3,3,4,5,5,6,7}
6740402760: {1,1,1,2,2,3,4,4,4,6,6,7,8}
543454231320: {1,1,1,2,2,3,4,4,5,6,7,8,9,10}
57619849046760: {1,1,1,2,2,3,4,5,5,6,8,9,10,11,12}
MAPLE
b:= proc(n, i) option remember;
`if`(n>(i*(i+1)/2), 0, `if`(n=0, [1, 0], b(n, i-1)+
(p-> p+[0, p[1]*x^i])(b(n-i, min(n-i, i-1)))))
end:
a:= n-> (p-> mul((c-> `if`(c=0, 1, ithprime(c)))(
coeff(p, x, i)), i=1..degree(p)))(b(n$2)[2]):
seq(a(n), n=0..21); # Alois P. Heinz, Feb 23 2024
MATHEMATICA
Table[Times@@Prime/@Length/@Split[Sort[Join@@Select[IntegerPartitions[n], UnsameQ@@#&]]], {n, 0, 15}]
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 07 2019
STATUS
approved