login
A325504
Product of products of parts over all strict integer partitions of n.
12
1, 1, 2, 6, 12, 120, 1440, 40320, 1209600, 1567641600, 2633637888000, 13905608048640000, 5046067048690483200000, 5289893008483207348224000000, 1266933607446134946465526579200000000, 99304891373531545064656621572980736000000000000
OFFSET
0,3
LINKS
FORMULA
A001222(a(n)) = A325515(n).
a(n) = A003963(A325506(n)).
EXAMPLE
The strict partitions of 5 are {(5), (4,1), (3,2)} with product a(5) = 5*4*1*3*2 = 120.
The sequence of terms together with their prime indices begins:
1: {}
1: {}
2: {1}
6: {1,2}
12: {1,1,2}
120: {1,1,1,2,3}
1440: {1,1,1,1,1,2,2,3}
40320: {1,1,1,1,1,1,1,2,2,3,4}
1209600: {1,1,1,1,1,1,1,1,2,2,2,3,3,4}
1567641600: {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,4}
2633637888000: {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,4,4}
MAPLE
a:= n-> mul(i, i=map(x-> x[], select(x->
nops(x)=nops({x[]}), combinat[partition](n)))):
seq(a(n), n=0..15); # Alois P. Heinz, Aug 03 2021
# second Maple program:
b:= proc(n, i) option remember; `if`(n=0, [1$2], `if`(i<1, [0, 1], ((f, g)->
[f[1]+g[1], f[2]*g[2]*i^g[1]])(b(n, i-1), b(n-i, min(n-i, i-1)))))
end:
a:= n-> b(n$2)[2]:
seq(a(n), n=0..15); # Alois P. Heinz, Aug 03 2021
MATHEMATICA
Table[Times@@Join@@Select[IntegerPartitions[n], UnsameQ@@#&], {n, 0, 10}]
CROSSREFS
Cf. A000009, A006128, A007870 (non-strict version), A015723, A022629 (sum of products of parts), A066186, A066189, A066633, A246867, A325505, A325506, A325512, A325513, A325515.
Sequence in context: A089423 A062349 A376512 * A193619 A290406 A371042
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 07 2019
STATUS
approved