This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A007870 Determinant of character table of symmetric group S_n. 11
 1, 1, 2, 6, 96, 2880, 9953280, 100329062400, 10651768002183168000, 150283391703941024789299200000, 9263795272057860957392207640004657152000000000, 16027108137650009941734148595388542471170145479274004480000000000000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..18 F. W. Schmidt and R. Simion, On a partition identity, J. Combin. Theory, A 36 (1984), 249-252. D. Vaintrob, A product identity for partitions, MathOverflow, June 2012. FORMULA Product of all parts of all partitions of n. From Gus Wiseman, May 09 2019: (Start) a(n) = A003963(A325501(n)). A001222(a(n)) = A325536(n). A001221(a(n)) = A000720(n). (End) EXAMPLE 1 + x + 2*x^2 + 6*x^3 + 96*x^4 + 2880*x^5 + 9953280*x^6 + 100329062400*x^7 + ... The integer partitions of 4 are {(4), (3,1), (2,2), (2,1,1), (1,1,1,1)} with product 4*3*1*2*2*2*1*1*1*1*1*1 = 96. - Gus Wiseman, May 09 2019 MAPLE b:= proc(n, i) option remember; `if`(n=0, [1\$2], ((f, g)->        [f[1]+g[1], f[2]*g[2]*i^g[1]])(`if`(i<2, [0, 1],        b(n, i-1)), `if`(i>n, [0, 1], b(n-i, i))))     end: a:= n-> b(n, n)[2]: seq(a(n), n=0..12);  # Alois P. Heinz, Jul 30 2013 # Alternative: with(combinat): P:=proc(n) local a, k; a:=partition(n); a:=mul(convert(a[k], `*`), k=1..nops(a)); end: seq(P(i), i=0..12); # Paolo P. Lava, Dec 21 2018 MATHEMATICA Needs["Combinatorica`"]; Table[Times@@Flatten[Partitions[n]], {n, 10}] a[ n_] := If[n < 0, 0, Times @@ Flatten @ IntegerPartitions @ n] (* Michael Somos, Jun 11 2012 *) Table[Exp[Total[Map[Log, IntegerPartitions [n]], 2]], {n, 1, 25}] (* Richard R. Forberg, Dec 08 2014 *) b[n_, i_] := b[n, i] = If[n == 0, {1, 1}, Function[{f, g}, {f[[1]] + g[[1]], f[[2]]*g[[2]]*i^g[[1]]}][If[i < 2, {0, 1}, b[n, i - 1]], If[i > n, {0, 1}, b[n - i, i]]]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Aug 29 2016, after Alois P. Heinz *) PROG (GAP) List(List([0..11], n->Flat(Partitions(n))), Product); # Muniru A Asiru, Dec 21 2018 CROSSREFS Row-products of A302246 and A302247. Cf. A006128, A006906, A066186, A066633, A086644, A325501, A325504, A325507, A325536. Sequence in context: A092287 A035482 A322716 * A081992 A066091 A100704 Adjacent sequences:  A007867 A007868 A007869 * A007871 A007872 A007873 KEYWORD nonn AUTHOR Peter J. Cameron, Götz Pfeiffer [ goetz(AT)dcs.st-and.ac.uk ] STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 20 10:00 EDT 2019. Contains 328257 sequences. (Running on oeis4.)