login
A372240
a(n) = Product_{j=1..n} j^(floor(sqrt(j))).
3
1, 1, 2, 6, 96, 2400, 86400, 4233600, 270950400, 197522841600, 197522841600000, 262902902169600000, 454296214949068800000, 998088784243104153600000, 2738755623963077797478400000, 9243300230875387566489600000000, 605768923930649399557462425600000000
OFFSET
0,3
FORMULA
a(n^2) = A372241(n^2) * n!^2 / (n^2)!.
a(n^2) = (n^2)!^n * n!^2 / A255322(n).
log(a(n)) ~ (2*n^(3/2)/3 - n/2 - 5*sqrt(n)/6 + 1/4)*log(n) - 4*n^(3/2)/9 + n/2 - sqrt(n).
MATHEMATICA
Table[Product[j^(Floor[Sqrt[j]]), {j, 1, n}], {n, 0, 17}]
CROSSREFS
Sequence in context: A092287 A035482 A322716 * A007870 A081992 A066091
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Apr 23 2024
STATUS
approved