OFFSET
0,2
COMMENTS
FORMULA
a(n) = 2*a(n-1) + A028283(n) = 2*a(n-1) + 2*binomial(2n-2, n-1)*(3*n-1)/n for n >= 1.
D-finite with recurrence n*a(n) +2*(-2*n-1)*a(n-1) +4*(-n+6)*a(n-2) +8*(2*n-5)*a(n-3)=0. - R. J. Mathar, Apr 24 2024
MAPLE
a := n -> binomial(2*n, n) + 4*add(2^(n-k-1)*binomial(2*k, k), k = 0 .. n-1):
seq(a(n), n = 0 .. 25);
# Second program:
a:= proc(n) option remember; `if`(n=0, 1, 2*a(n-1)+2*binomial(2*n-2, n-1)*(3*n-1)/n) end: seq(a(n), n = 0 .. 25);
# Recurrence:
a := proc(n) option remember; if n < 2 then return [1, 6][n + 1] fi;
((-18*(n - 2)^2 - 42*n + 66)*a(n - 1) + 4*(3*n - 1)*(2*n - 3)*a(n - 2)) / (n*(4 - 3*n)) end: seq(a(n), n = 0..25); # Peter Luschny, Apr 23 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Mélika Tebni, Apr 23 2024
STATUS
approved