login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372237
a(0) = 4; to obtain a(k), write out the base-(2^k) expansion of a(k-1), bump to base 2^(k+1), then subtract 1.
1
4, 15, 26, 49, 96, 191, 318, 573, 1084, 2107, 4154, 8249, 16440, 32823, 65590, 131125, 262196, 524339, 1048626, 2097201, 4194352, 8388655, 16777262, 33554477, 67108908, 134217771, 268435498, 536870953, 1073741864, 2147483687, 4294967334, 8589934629, 17179869220
OFFSET
0,1
COMMENTS
Applying to the proof of the usual Goodstein's theorem to the ordinal number omega^omega shows that: for no matter what initial value and no matter what increasing sequence of bases b(0), b(1), ... with b(0) >= 2, the (weak) Goodstein sequence eventually terminates with 0. Here b(k) = 2^(k+1).
Sequence terminates at a(2^(2^70+70) + 2^70 + 68) = 0.
LINKS
Googology Wiki, Goodstein sequence.
FORMULA
a(k) = 2^(k+2) + 68 - k for 5 <= k <= 68. The base-(2^(k+1)) expansion of a(k) consists of two digits 2 and 68 - k.
a(k) = 2^(k+1) + 2^70 + 68 - k for 69 <= 2^70 + 68. The base-(2^(k+1)) expansion of a(k) consists of two digits 1 and 2^70 + 68 - k.
a(k) = 2^(2^70+70) + 2^70 + 68 - k for 2^70 + 69 <= k <= 2^(2^70+70) + 2^70 + 68. The base-(2^(k+1)) expansion of a(k) consists of a single digit 2^(2^70+70) + 2^70 + 68 - k.
EXAMPLE
a(0) = 100_2 = 4;
a(1) = 100_4 - 1 = 15 = 33_4;
a(2) = 33_8 - 1 = 26 = 32_8;
a(3) = 32_16 - 1 = 49 = 31_16;
a(4) = 31_32 - 1 = 96 = 30_32;
a(5) = 30_64 - 1 = 191 = (2,63)_64.
PROG
(PARI) A372237_first_N_terms(N) = my(v=vector(N+1)); v[1] = 4; for(i=1, N, v[i+1] = fromdigits(digits(v[i], 2^i), 2^(i+1))-1); v
CROSSREFS
Sequence in context: A061873 A017437 A281264 * A366869 A267103 A030553
KEYWORD
nonn,easy,fini
AUTHOR
Jianing Song, Apr 23 2024
STATUS
approved