OFFSET
0,2
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
E.g.f.: A(x) = exp( x - 2*LambertW(-x/2 * exp(x/2)) ).
If e.g.f. satisfies A(x) = exp( r*x*A(x)^(t/r) * (1 + A(x)^(u/r)) ), then a(n) = r * Sum_{k=0..n} (t*n+u*k+r)^(n-1) * binomial(n,k).
G.f.: Sum_{k>=0} (k/2+1)^(k-1) * x^k/(1 - (k/2+1)*x)^(k+1).
a(n) ~ sqrt(1 + LambertW(exp(-1))) * n^(n-1) / (2^(n-1) * exp(n) * LambertW(exp(-1))^(n+2)). - Vaclav Kotesovec, Apr 24 2024
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x-2*lambertw(-x/2*exp(x/2)))))
(PARI) a(n, r=1, t=0, u=1/2) = r*sum(k=0, n, (t*n+u*k+r)^(n-1)*binomial(n, k));
(PARI) my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (k/2+1)^(k-1)*x^k/(1-(k/2+1)*x)^(k+1)))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 23 2024
STATUS
approved