login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372236
E.g.f. A(x) satisfies A(x) = exp( x * (1 + A(x)^(1/2)) ).
4
1, 2, 6, 26, 152, 1132, 10300, 111064, 1387104, 19713104, 314350064, 5560881328, 108110428288, 2291750937088, 52618613073408, 1301031907140608, 34470409922547200, 974354631630161152, 29270099764874881792, 931275451933870415104, 31285710787985504633856
OFFSET
0,2
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
E.g.f.: A(x) = exp( x - 2*LambertW(-x/2 * exp(x/2)) ).
If e.g.f. satisfies A(x) = exp( r*x*A(x)^(t/r) * (1 + A(x)^(u/r)) ), then a(n) = r * Sum_{k=0..n} (t*n+u*k+r)^(n-1) * binomial(n,k).
G.f.: Sum_{k>=0} (k/2+1)^(k-1) * x^k/(1 - (k/2+1)*x)^(k+1).
a(n) ~ sqrt(1 + LambertW(exp(-1))) * n^(n-1) / (2^(n-1) * exp(n) * LambertW(exp(-1))^(n+2)). - Vaclav Kotesovec, Apr 24 2024
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x-2*lambertw(-x/2*exp(x/2)))))
(PARI) a(n, r=1, t=0, u=1/2) = r*sum(k=0, n, (t*n+u*k+r)^(n-1)*binomial(n, k));
(PARI) my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (k/2+1)^(k-1)*x^k/(1-(k/2+1)*x)^(k+1)))
CROSSREFS
Sequence in context: A000629 A185994 A032187 * A003659 A159602 A032271
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 23 2024
STATUS
approved