login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372233
Coefficient of x^n in the expansion of 1 / ( (1-x) * (1-x-x^2) )^n.
5
1, 2, 12, 77, 520, 3612, 25557, 183192, 1325808, 9666635, 70897112, 522472392, 3865669717, 28697325048, 213649228560, 1594540806612, 11926354293792, 89372808145692, 670865679851667, 5043360211505000, 37965778448487120, 286151354441445570, 2159143860124095120
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..floor(n/2)} binomial(n+k-1,k) * binomial(3*n-k-1,n-2*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-x) * (1-x-x^2) ).
D-finite with recurrence +575*n*(n-1)*(n-2)*a(n) +40*(n-1)*(n-2)*(125*n-178)*a(n-1) -16*(n-2)*(3272*n^2-5536*n+75)*a(n-2) +8*(-22112*n^3+169392*n^2-450082*n+415827)*a(n-3) +1344*(96*n^3-1328*n^2+5794*n-8139)*a(n-4) +3072*(4*n-15)*(2*n-9)*(4*n-17)*a(n-5)=0. - R. J. Mathar, May 02 2024
a(n) ~ sqrt((1/8 + cos(arccos(sqrt(37)/8)/3)/sqrt(37))/(Pi*n)) / (-2/3 + sqrt(35/18)*cos(arccos(-4537/(560*sqrt(70)))/3))^n. - Vaclav Kotesovec, May 04 2024
MAPLE
A372233 := proc(n)
add(binomial(n+k-1, k) * binomial(3*n-k-1, n-2*k), k=0..floor(n/2));
end proc:
seq(A372233(n), n=0..50) ; # R. J. Mathar, May 02 2024
MATHEMATICA
Table[SeriesCoefficient[1/((1-x)*(1-x-x^2))^n, {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, May 04 2024 *)
PROG
(PARI) a(n, s=2, t=1, u=1) = sum(k=0, n\s, binomial(t*n+k-1, k)*binomial((t+u+1)*n-(s-1)*k-1, n-s*k));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 02 2024
STATUS
approved