The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A081014 a(n) = Lucas(4*n+1) + 1, or Lucas(2*n)*Lucas(2*n+1). 1
 2, 12, 77, 522, 3572, 24477, 167762, 1149852, 7881197, 54018522, 370248452, 2537720637, 17393796002, 119218851372, 817138163597, 5600748293802, 38388099893012, 263115950957277, 1803423556807922, 12360848946698172 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 REFERENCES Hugh C. Williams, Edouard Lucas and Primality Testing, John Wiley and Sons, 1998, p. 75. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (8,-8,1). FORMULA a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3). a(n) = 1 + (1/2)*(((7/2)-(3/2)*sqrt(5))^n + ((7/2)+(3/2)*sqrt(5))^n + (1/2)*sqrt(5)*(((7/2)+(3/2)*sqrt(5))^n  - ((7/2)-(3/2)*sqrt(5))^n), with n >= 0. - Paolo P. Lava, Dec 01 2008 From R. J. Mathar, Sep 03 2010: (Start) G.f.: (2 -4*x -3*x^2)/((1-x)*(1-7*x+x^2)). a(n) = 1 + A056914(n). (End) a(n) = 7*a(n-1) - a(n-2) - 5, n >= 2. - R. J. Mathar, Nov 07 2015 MAPLE luc := proc(n) option remember: if n=0 then RETURN(2) fi: if n=1 then RETURN(1) fi: luc(n-1)+luc(n-2): end: for n from 0 to 25 do printf(`%d, `, luc(4*n+1)+1) od: # James A. Sellers, Mar 03 2003 MATHEMATICA LinearRecurrence[{8, -8, 1}, {2, 12, 77}, 20] (* G. C. Greubel, Dec 24 2017 *) LucasL[4*Range[0, 20] +1] +1 (* G. C. Greubel, Jul 14 2019 *) CoefficientList[Series[(2-4x-3x^2)/((1-x)(1-7x+x^2)), {x, 0, 30}], x] (* Harvey P. Dale, Aug 27 2021 *) PROG (PARI) vector(20, n, n--; f=fibonacci; f(4*n+2)+f(4*n)+1) \\ G. C. Greubel, Dec 24 2017 (MAGMA) I:=[2, 12, 77]; [n le 3 select I[n] else 8*Self(n-1) - 8*Self(n-2) + Self(n-3): n in [0..30]]; // G. C. Greubel, Dec 24 2017 (Sage) [lucas_number2(4*n+1, 1, -1) +1 for n in (0..20)] # G. C. Greubel, Jul 14 2019 (GAP) List([0..20], n-> Lucas(1, -1, 4*n+1)[2] +1); # G. C. Greubel, Jul 14 2019 CROSSREFS Cf. A000045 (Fibonacci numbers), A000032 (Lucas numbers). Sequence in context: A285489 A121680 A277478 * A223771 A062871 A306272 Adjacent sequences:  A081011 A081012 A081013 * A081015 A081016 A081017 KEYWORD nonn,easy AUTHOR R. K. Guy, Mar 01 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 12:24 EST 2021. Contains 349557 sequences. (Running on oeis4.)