login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081011
a(n) = Fibonacci(4n+3) + 2, or Fibonacci(2n+3)*Lucas(2n).
2
4, 15, 91, 612, 4183, 28659, 196420, 1346271, 9227467, 63245988, 433494439, 2971215075, 20365011076, 139583862447, 956722026043, 6557470319844, 44945570212855, 308061521170131, 2111485077978052, 14472334024676223
OFFSET
0,1
COMMENTS
For n>0, a(n) is the area of the trapezoid defined by the four points (F(n+1), F(n+2)), (F(n+2), F(n+1)), (F(n+3), F(n+4)), and (F(n+4), F(n+3)) where F(n) = A000045(n). - J. M. Bergot, May 14 2014
REFERENCES
Hugh C. Williams, Edouard Lucas and Primality Testing, John Wiley and Sons, 1998, p. 75
FORMULA
a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3).
G.f.: (4-17*x+3*x^2)/((1-x)*(1-7*x+x^2)). - Colin Barker, Jun 22 2012
Product_{n>=0} (1 - 1/a(n)) = (3-phi)/2 = A187798. - Amiram Eldar, Nov 28 2024
MAPLE
with(combinat) for n from 0 to 30 do printf(`%d, `, fibonacci(4*n+3)+2) od # James A. Sellers, Mar 03 2003
MATHEMATICA
Table[Fibonacci[4n+3] +2, {n, 0, 30}] (* or *)
Table[Fibonacci[2n+3]*LucasL[2n], {n, 0, 30}] (* Alonso del Arte, Apr 18 2011 *)
LinearRecurrence[{8, -8, 1}, {4, 15, 91}, 30] (* Harvey P. Dale, Apr 22 2017 *)
PROG
(Magma) [Fibonacci(4*n+3)+2: n in [0..30]]; // Vincenzo Librandi, Apr 18 2011
(PARI) vector(30, n, n--; fibonacci(4*n+3)+2) \\ G. C. Greubel, Jul 14 2019
(Sage) [fibonacci(4*n+3)+2 for n in (0..30)] # G. C. Greubel, Jul 14 2019
(GAP) List([0..30], n-> Fibonacci(4*n+3) -2); # G. C. Greubel, Jul 14 2019
CROSSREFS
Cf. A000045 (Fibonacci numbers), A000032 (Lucas numbers), A187798.
Sequence in context: A304920 A076900 A346941 * A008829 A322920 A372730
KEYWORD
nonn,easy
AUTHOR
R. K. Guy, Mar 01 2003
EXTENSIONS
More terms from James A. Sellers, Mar 03 2003
STATUS
approved