login
A076900
Expansion of e.g.f.: 1/Product_{m>0} (1-x^m/(m-1)!).
4
1, 1, 4, 15, 88, 505, 4056, 31549, 311816, 3083049, 36343720, 431215741, 5937234348, 82236865165, 1291252453050, 20477737537755, 361495828272496, 6449450737736065, 126566562342343176, 2509520619696338269, 54179963857121953460, 1182248224137860933781
OFFSET
0,3
LINKS
FORMULA
E.g.f.: exp(Sum_{k>=1} Sum_{j>=1} x^(j*k)/(k*((j - 1)!)^k)). - Ilya Gutkovskiy, Sep 13 2018
a(n) ~ c * n * n!, where c = A247551/2. - Vaclav Kotesovec, Sep 13 2018
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1)+`if`(i>n, 0, b(n-i, i)*binomial(n, i)*i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..30); # Alois P. Heinz, May 11 2016
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, b[n, i-1] + If[i > n, 0, b[n-i, i] Binomial[n, i] i]]];
a[n_] := b[n, n];
a /@ Range[0, 30] (* Jean-François Alcover, Nov 03 2020, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A079155 A306178 A304920 * A346941 A081011 A008829
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Nov 26 2002
STATUS
approved