login
A247551
Decimal expansion of Product_{k>=2} 1/(1-1/k!).
21
2, 5, 2, 9, 4, 7, 7, 4, 7, 2, 0, 7, 9, 1, 5, 2, 6, 4, 8, 1, 8, 0, 1, 1, 6, 1, 5, 4, 2, 5, 3, 9, 5, 4, 2, 4, 1, 1, 7, 8, 7, 0, 2, 3, 9, 4, 8, 4, 5, 9, 9, 7, 3, 3, 7, 5, 8, 4, 9, 3, 4, 9, 8, 2, 5, 0, 0, 2, 1, 1, 8, 7, 8, 0, 0, 8, 6, 6, 9, 9, 1, 2, 1, 9, 9, 8, 8, 3, 6, 4, 6, 2, 5, 2, 6, 1, 4, 9, 5, 5, 1, 6, 4, 3, 2
OFFSET
1,1
LINKS
Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 269.
A. Knopfmacher, A. M. Odlyzko, B. Pittel, L. B. Richmond, D. Stark, G. Szekeres, and N. C. Wormald, The Asymptotic Number of Set Partitions with Unequal Block Sizes, The Electronic Journal of Combinatorics, Volume 6 (1999), Research Paper #R2.
FORMULA
Product_{k>=2} 1/(1-1/k!).
Equals lim_{n -> oo} A005651(n) / n!.
Equals 1/A282529. - Amiram Eldar, Sep 15 2023
EXAMPLE
2.5294774720791526481801161542539542411787023948459973375849349825...
MAPLE
evalf(1/product(1-1/k!, k=2..infinity), 100); # Vaclav Kotesovec, Sep 19 2014
MATHEMATICA
digits = 105;
RealDigits[NProduct[1/(1-1/k!), {k, 2, Infinity}, WorkingPrecision -> digits+10, NProductFactors -> digits], 10, digits][[1]] (* Jean-François Alcover, Nov 02 2020 *)
PROG
(PARI) default(realprecision, 150); 1/prodinf(k=2, 1 - 1/k!) \\ Vaclav Kotesovec, Sep 21 2014
KEYWORD
nonn,cons,easy
AUTHOR
Vaclav Kotesovec, Sep 19 2014
STATUS
approved