login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247554
Decimal expansion of a(F_5), the maximum inradius of all triangles that lie in a regular pentagon of width 1.
0
2, 4, 4, 0, 1, 5, 5, 2, 8, 0, 9, 4, 1, 7, 1, 1, 1, 5, 3, 8, 1, 3, 7, 4, 4, 3, 3, 6, 8, 1, 2, 1, 6, 1, 2, 4, 2, 6, 4, 4, 3, 6, 9, 8, 8, 7, 0, 8, 1, 6, 5, 2, 8, 3, 2, 7, 4, 0, 2, 3, 2, 9, 6, 1, 1, 8, 8, 3, 5, 4, 8, 9, 2, 2, 1, 6, 3, 2, 5, 0, 7, 0, 8, 6, 6, 8, 4, 4, 8, 8, 4, 2, 6, 5, 4, 5, 8, 4, 7, 1, 9
OFFSET
0,1
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 8.19 Circumradius-Inradius Constants, p. 535.
FORMULA
Smallest positive root of the polynomial given in the Mathematica code.
EXAMPLE
0.2440155280941711153813744336812161242644369887...
MATHEMATICA
a[F5] = Root[5*x^8 - 175*x^7 + 611*x^6 - 816*x^5 + 720*x^4 - 280*x^3 + 160*x^2 - 96*x + 16, x, 1]; RealDigits[a[F5], 10, 101] // First
PROG
(PARI) solve(x=0, 1/4, 5*x^8 - 175*x^7 + 611*x^6 - 816*x^5 + 720*x^4 - 280*x^3 + 160*x^2 - 96*x + 16) \\ Michel Marcus, Sep 19 2014
CROSSREFS
Cf. A019827 (a(F_4)(unit square)).
Sequence in context: A258371 A111172 A173556 * A198786 A176531 A198362
KEYWORD
nonn,cons
AUTHOR
STATUS
approved