login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247555
A permutation of the nonnegative numbers: a(4n) = 8n, a(4n+1) = 2n + 1, a(4n+2) = 4n + 2, a(4n+3) = 8n + 4.
1
0, 1, 2, 4, 8, 3, 6, 12, 16, 5, 10, 20, 24, 7, 14, 28, 32, 9, 18, 36, 40, 11, 22, 44, 48, 13, 26, 52, 56, 15, 30, 60, 64, 17, 34, 68, 72, 19, 38, 76, 80, 21, 42, 84, 88, 23, 46, 92, 96, 25, 50, 100, 104, 27, 54, 108, 112, 29, 58, 116, 120
OFFSET
0,3
COMMENTS
A permutation of the nonnegative integers.
FORMULA
a(n) = a(n-4) + a(n-8) - a(n-12).
a(n) = 2*a(n-4) - a(n-8). - Colin Barker, Sep 19 2014
G.f.: x*(4*x^6 + 2*x^5 + x^4 + 8*x^3 + 4*x^2 + 2*x + 1) / ((x-1)^2*(x+1)^2*(x^2+1)^2). - Colin Barker, Sep 19 2014
a(n) = (11*n-3+(n+3)*(-1)^n+(4*n-1+(-1)^n)*cos(n*Pi/2)+2*(9-3*n+4(-1)^n)* sin(n*Pi/2))/8. - Wesley Ivan Hurt, May 07 2021
MATHEMATICA
a[n_]:=Switch[Mod[n, 4], 0, 2 n, 1, (n+1)/2, 2, n, 3, 2 n-2]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Oct 09 2014 *)
LinearRecurrence[{0, 0, 0, 2, 0, 0, 0, -1}, {0, 1, 2, 4, 8, 3, 6, 12}, 50] (* G. C. Greubel, May 01 2018 *)
PROG
(PARI) Vec(x*(4*x^6+2*x^5+x^4+8*x^3+4*x^2+2*x+1)/((x-1)^2*(x+1)^2*(x^2+1)^2) + O(x^100)) \\ Colin Barker, Sep 19 2014
(Magma) &cat[[4*(i-1), i, 2*i, 4*i]: i in [1..50 by 2]]; // Bruno Berselli, Sep 19 2014
KEYWORD
nonn,easy,less
AUTHOR
Paul Curtz, Sep 19 2014
STATUS
approved