login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247552
Least numbers x such that the ratio of the sum of all the cyclic permutations of x, plus the unpermuted number, and x itself is equal to n.
2
1, 11, 111, 1111, 11111, 111111, 428571, 11111111, 111111111, 1111111111, 1818, 111111111111, 230769, 428571428571, 111111111111111, 1111111111111111, 4705882352941176, 111111111111111111, 473684210526315789, 11111111111111111111, 142857, 18181818
OFFSET
1,2
COMMENTS
Mainly repdigit numbers with n 1's.
If x has m digits with sum s then the sum of the m cyclic permutations of x (including x itself) is s*(10^m-1)/9, since each digit occurs once in each position. My program uses this to test potential (m, s) pairs. - Jens Kruse Andersen, Sep 23 2014
If appears that the number of digits of a(n) is n-1 if and only if n is a full reptend prime (A001913). - Michel Marcus, Sep 24 2014
There are 106 repdigit numbers with n 1's in the first 5000 terms. - Jens Kruse Andersen, Sep 30 2014
LINKS
EXAMPLE
428571 is the minimum number such that 428571 + 142857 + 714285 + 571428 + 857142 + 285714 = 2999997 and 2999997 / 428571 = 7.
1818 is the minimum number such that 1818 + 8181 + 1818 + 8181 = 19998 and 19998 / 1818 = 11.
MAPLE
P:=proc(q) local a, b, c, d, j, n, t, v;
v:=array(1..100); for j from 1 to 100 do v[j]:=0; od; t:=0;
for n from 1 to q do a:=n; b:=a; c:=ilog10(a);
for k from 1 to c do a:=(a mod 10)*10^c+trunc(a/10); b:=b+a; od;
if type(b/n, integer) then if b/n=t+1
then t:=t+1; lprint(t, n); while v[t+1]>0 do t:=t+1; lprint(t, v[t]); od;
else if b/n>t+1 then if v[b/n]=0 then v[b/n]:=n; fi; fi;
fi; fi; od; end: P(10^6);
PROG
(PARI) isok(n, k) = {d = digits(k); nbd = #d; sp = 0; for (i=1, nbd, dpk = vector(nbd-1, j, d[j+1]); dpk = concat(dpk, d[1]); sp += subst(Pol(dpk, x), x, 10); d = dpk; ); sp == k*n; }
a(n) = {k = 1; while(! isok(n, k), k++; ); k ; } \\ Michel Marcus, Sep 21 2014
(PARI) a(n)=my(r=0, m, g, s, x); for(m=1, n, r=10*r+1; g=n/gcd(r, n); forstep(s=g, 9*m, g, x=s*r/n; if(#digits(x)==m && sumdigits(x)==s, return(x))))
vector(30, n, a(n)) \\ Faster program. Jens Kruse Andersen, Sep 23 2014
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Paolo P. Lava, Sep 19 2014
EXTENSIONS
a(12)-a(22) from Jens Kruse Andersen, Sep 23 2014
STATUS
approved