OFFSET
1,2
COMMENTS
Mainly repdigit numbers with n 1's.
If x has m digits with sum s then the sum of the m cyclic permutations of x (including x itself) is s*(10^m-1)/9, since each digit occurs once in each position. My program uses this to test potential (m, s) pairs. - Jens Kruse Andersen, Sep 23 2014
If appears that the number of digits of a(n) is n-1 if and only if n is a full reptend prime (A001913). - Michel Marcus, Sep 24 2014
There are 106 repdigit numbers with n 1's in the first 5000 terms. - Jens Kruse Andersen, Sep 30 2014
LINKS
Jens Kruse Andersen, Table of n, a(n) for n = 1..1000
EXAMPLE
428571 is the minimum number such that 428571 + 142857 + 714285 + 571428 + 857142 + 285714 = 2999997 and 2999997 / 428571 = 7.
1818 is the minimum number such that 1818 + 8181 + 1818 + 8181 = 19998 and 19998 / 1818 = 11.
MAPLE
P:=proc(q) local a, b, c, d, j, n, t, v;
v:=array(1..100); for j from 1 to 100 do v[j]:=0; od; t:=0;
for n from 1 to q do a:=n; b:=a; c:=ilog10(a);
for k from 1 to c do a:=(a mod 10)*10^c+trunc(a/10); b:=b+a; od;
if type(b/n, integer) then if b/n=t+1
then t:=t+1; lprint(t, n); while v[t+1]>0 do t:=t+1; lprint(t, v[t]); od;
else if b/n>t+1 then if v[b/n]=0 then v[b/n]:=n; fi; fi;
fi; fi; od; end: P(10^6);
PROG
(PARI) isok(n, k) = {d = digits(k); nbd = #d; sp = 0; for (i=1, nbd, dpk = vector(nbd-1, j, d[j+1]); dpk = concat(dpk, d[1]); sp += subst(Pol(dpk, x), x, 10); d = dpk; ); sp == k*n; }
a(n) = {k = 1; while(! isok(n, k), k++; ); k ; } \\ Michel Marcus, Sep 21 2014
(PARI) a(n)=my(r=0, m, g, s, x); for(m=1, n, r=10*r+1; g=n/gcd(r, n); forstep(s=g, 9*m, g, x=s*r/n; if(#digits(x)==m && sumdigits(x)==s, return(x))))
vector(30, n, a(n)) \\ Faster program. Jens Kruse Andersen, Sep 23 2014
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Paolo P. Lava, Sep 19 2014
EXTENSIONS
a(12)-a(22) from Jens Kruse Andersen, Sep 23 2014
STATUS
approved