login
A247317
Numbers x such that the sum of all their cyclic permutations is equal to that of all cyclic permutations of sigma(x) and all cyclic permutations of Euler totient function phi(x).
4
1, 2907, 3339, 3726, 4293, 4371, 4614, 5049, 5319, 5607, 5751, 6291, 17901, 18009, 18441, 19413, 20349, 20655, 20943, 21219, 21267, 21573, 21627, 22137, 22191, 23355, 24831, 25647, 25731, 26019, 26145, 26163, 27405, 27537, 28035, 28215, 28227, 28305, 29601, 30429
OFFSET
1,2
COMMENTS
Intersection of A247315 and A247316.
All numbers appear to be multiples of 3.
Big steps between a(135) and a(136), a(1387) and a(1388),...
EXAMPLE
The sum of the cyclic permutations of 4371 is 4371 + 1437 + 7143 + 3714 = 16667; sigma(4371) = 6144 and the sum of its cyclic permutations is 6144 + 4614 + 4461 + 1446 = 16667; phi(4371) = 2760 and the sum of its cyclic permutations is2760+276+6027+7602 = 16667.
The sum of the cyclic permutations of 24831 is 24831 + 12483 + 31248 + 83124 + 48312 = 199998; sigma(24831) = 37440 and the sum of its cyclic permutations is 37440 + 3744 + 40374 + 44037 + 74403 = 199998; phi(24831) = 15840 and the sum of its cyclic permutations is 15840 + 1584 + 40158 + 84015 + 58401 = 199998.
MAPLE
with(numtheory):P:=proc(q) local a, b, c, d, f, k, n;
for n from 1 to q do a:=n; b:=a; c:=ilog10(a);
for k from 1 to c do a:=(a mod 10)*10^c+trunc(a/10); b:=b+a; od;
a:=sigma(n); d:=a; c:=ilog10(a);
for k from 1 to c do a:=(a mod 10)*10^c+trunc(a/10); d:=d+a; od;
a:=phi(n); f:=a; c:=ilog10(a);
for k from 1 to c do a:=(a mod 10)*10^c+trunc(a/10); f:=f+a; od;
if b=d and d=f then print(n); fi; od; end: P(10^9);
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Paolo P. Lava, Sep 12 2014
STATUS
approved