login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A101942
Write n in base 4 as n = b_0 + b_1*4 + b_2*4^2 + b_3*4^3 + ...; then a(n) = Product_{i >= 0} prime(i+1)^b_i.
4
1, 2, 4, 8, 3, 6, 12, 24, 9, 18, 36, 72, 27, 54, 108, 216, 5, 10, 20, 40, 15, 30, 60, 120, 45, 90, 180, 360, 135, 270, 540, 1080, 25, 50, 100, 200, 75, 150, 300, 600, 225, 450, 900, 1800, 675, 1350, 2700, 5400, 125, 250, 500, 1000, 375, 750, 1500, 3000, 1125
OFFSET
0,2
FORMULA
a(4^k) = prime(k+1).
EXAMPLE
a(13) = a(1 + 3*4) = 2^1 * 3^3 = 54.
a(29) = a(1 + 3*4 + 1*4^2) = 2^1 * 3^3 * 5^1 = 270.
MAPLE
a:= n-> (l-> mul(ithprime(i)^l[i], i=1..nops(l)))(convert(n, base, 4)):
seq(a(n), n=0..60); # Alois P. Heinz, Aug 31 2024
MATHEMATICA
f[n_Integer, base_Integer] /; base >= 2 := Product[ Prime[i]^IntegerDigits[n, base][[Length[IntegerDigits[n, base]] + 1 - i]], {i, Length[IntegerDigits[n, base]]}] Table[f[i, 4], {i, 0, 45}]
PROG
(PARI)
f(n, b) = { my(d = digits(n, b), L = #d); prod(i=1, L, prime(i)^d[L+1-i]) }
apply(n -> f(n, 4), [0..45]) \\ Satish Bysany, Mar 07 2017
CROSSREFS
Cf. A019565 (base 2), A101278 (base 3), A101943 (base 5), A054842 (base 10).
Sequence in context: A036118 A247555 A340730 * A344534 A050170 A087089
KEYWORD
base,nonn,easy
AUTHOR
Orges Leka (oleka(AT)students.uni-mainz.de), Dec 21 2004
STATUS
approved