login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A198786
G.f. satisfies: A(x) = 1 + 2*x*sqrt(A(x)/A(-x)).
0
1, 2, 4, 4, 0, -4, 0, 8, 0, -20, 0, 56, 0, -168, 0, 528, 0, -1716, 0, 5720, 0, -19448, 0, 67184, 0, -235144, 0, 832048, 0, -2971600, 0, 10697760, 0, -38779380, 0, 141430680, 0, -518579160, 0, 1910554800, 0, -7069052760, 0, 26256481680, 0, -97865068080, 0, 365930254560, 0
OFFSET
0,2
FORMULA
G.f. A(x) satisfies:
(1) A(x) * A(-x) = 1 + 4*x^2.
(2) A(x) / A(-x) = 2*A(x) - 1.
(3) A(x) + A(-x) = 2 + 8*x^2.
(4) A(x) = 1 + 2*x + 4*x^2 + 4*x^3*C(-x^2), where C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108).
a(n) = 4*hypergeom([3-n, 2-n], [2], -1) for n>0. - Peter Luschny, May 22 2017
D-recurrence: -(n+2)*(n-1)*a(n) -(n+3)*(n-2)*a(n-1) -4*(n+2)*(n-4)*a(n-2) -4*(n+3)*(n-5)*a(n-3)=0. - R. J. Mathar, May 22 2019
EXAMPLE
G.f.: A(x) = 1 + 2*x + 4*x^2 + 4*x^3 - 4*x^5 + 8*x^7 - 20*x^9 + 56*x^11 +...
where
A(x)/A(-x) = 1 + 4*x + 8*x^2 + 8*x^3 - 8*x^5 + 16*x^7 - 40*x^9 + 112*x^11 +...
MAPLE
a := n -> `if`(n=0, 1, 4*hypergeom([3-n, 2-n], [2], -1)):
seq(simplify(a(n)), n=0..48); # Peter Luschny, May 22 2017
MATHEMATICA
m = 50; A[_] = 1; Do[A[x_] = 1 + 2 x Sqrt[A[x]/A[-x]] + O[x]^m // Normal, {m}]; CoefficientList[A[x], x] (* Jean-François Alcover, Jun 29 2019 *)
PROG
(PARI) {a(n)=local(A=1+2*x); for(i=1, n, A=1+2*x*sqrt(A/subst(A, x, -x+x*O(x^n)))); polcoeff(A, n)}
CROSSREFS
Sequence in context: A111172 A173556 A247554 * A176531 A198362 A197827
KEYWORD
sign
AUTHOR
Paul D. Hanna, Oct 29 2011
STATUS
approved