login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261600
Number of primitive (aperiodic, or Lyndon) necklaces with n beads such that beads of a largest subset have label 0, beads of a largest remaining subset have label 1, and so on.
6
1, 1, 1, 3, 11, 49, 265, 1640, 11932, 96780, 887931, 8939050, 99298073, 1195617442, 15619180497, 219049941148, 3293800823995, 52746930894773, 897802366153076, 16167544246362566, 307372573010691195, 6148811682561388635, 129164845357775064609
OFFSET
0,4
LINKS
F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. [Cached copy, with permission, pdf format only]
Eric Weisstein's World of Mathematics, Necklace
Wikipedia, Lyndon word
FORMULA
a(n) ~ c * (n-1)!, where c = Product_{k>=2} 1/(1-1/k!) = A247551 = 2.52947747207915264818011615... . - Vaclav Kotesovec, Aug 27 2015
EXAMPLE
a(3) = 3: 001, 012, 021.
a(4) = 11: 0001, 0011, 0012, 0021, 0102, 0123, 0132, 0213, 0231, 0312, 0321.
MAPLE
with(numtheory):
b:= proc(n, i, g, d, j) option remember; `if`(g>0 and g<d, 0,
`if`(n=0, `if`(d=g, 1, 0), `if`(i<1, 0, b(n, i-1, g, d, j)+
`if`(i>n, 0, binomial(n/j, i/j)*b(n-i, i, igcd(i, g), d, j)))))
end:
a:= n-> `if`(n=0, 1, add(add((f-> `if`(f=0, 0, f*b(n$2, 0, d, j)))(
mobius(j)), j=divisors(d)), d=divisors(n))/n):
seq(a(n), n=0..25);
MATHEMATICA
b[n_, i_, g_, d_, j_] := b[n, i, g, d, j] = If[g>0 && g<d, 0, If[n==0, If[d == g, 1, 0], If[i<1, 0, b[n, i-1, g, d, j] + If[i>n, 0, Binomial[n/j, i/j]*b[n-i, i, GCD[i, g], d, j]]]]]; a[n_] := If[n==0, 1, Sum[Sum[ Function[f, If[f==0, 0, f*b[n, n, 0, d, j]]][MoebiusMu[j]], {j, Divisors[ d]}], {d, Divisors[n]}]/n]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Feb 22 2017, translated from Maple *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 27 2015
STATUS
approved