OFFSET
0,6
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..300
F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. [Cached copy, with permission, pdf format only]
Eric Weisstein's World of Mathematics, Necklace
Wikipedia, Lyndon word
Wikipedia, Necklace (combinatorics)
FORMULA
a(n) = (1/n) * Sum_{d | n} moebius(n/d) * A007837(d) for n>0. - Andrew Howroyd, Dec 21 2017
EXAMPLE
a(4) = 1: 0001.
a(5) = 3: 00001, 00011, 00101.
a(6) = 13: 000001, 000011, 000101, 000112, 000121, 000122, 001012, 001021, 001022, 001102, 001201, 001202, 010102.
a(7) = 24: 0000001, 0000011, 0000101, 0000111, 0000112, 0000121, 0000122, 0001001, 0001011, 0001012, 0001021, 0001022, 0001101, 0001102, 0001201, 0001202, 0010011, 0010012, 0010021, 0010022, 0010101, 0010102, 0010201, 0010202.
MAPLE
with(numtheory):
b:= proc(n, i, g, d, j) option remember; `if`(i*(i+1)/2<n or g>0
and g<d, 0, `if`(n=0, `if`(d=g, 1, 0), b(n, i-1, g, d, j)+
`if`(i>n, 0, binomial(n/j, i/j)*b(n-i, i-1, igcd(i, g), d, j))))
end:
a:= n-> `if`(n=0, 1, add(add((f-> `if`(f=0, 0, f*b(n$2, 0, d, j)))(
mobius(j)), j=divisors(d)), d=divisors(n))/n):
seq(a(n), n=0..30);
MATHEMATICA
a[0] = 1; a[n_] := With[{P = Product[1 + x^k/k!, {k, 1, n}] + O[x]^(n+1) // Normal}, DivisorSum[n, MoebiusMu[n/#]*#!*Coefficient[P, x, #]&]/n];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 28 2018, after Andrew Howroyd *)
PROG
(PARI) a(n)={if(n==0, 1, my(p=prod(k=1, n, (1+x^k/k!) + O(x*x^n))); sumdiv(n, d, moebius(n/d)*d!*polcoeff(p, d))/n)} \\ Andrew Howroyd, Dec 21 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 25 2015
STATUS
approved