login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247548
Decimal expansion of D^2, a constant associated with the "Dimer Problem" on a triangular lattice.
0
2, 3, 5, 6, 5, 2, 7, 3, 5, 3, 3, 4, 6, 2, 4, 8, 8, 0, 9, 2, 2, 9, 1, 4, 3, 1, 4, 7, 6, 3, 9, 9, 9, 4, 7, 6, 7, 9, 6, 4, 3, 9, 1, 5, 0, 0, 6, 7, 8, 4, 1, 6, 7, 9, 8, 3, 8, 6, 6, 1, 8, 7, 6, 0, 6, 3, 4, 1, 9, 1, 2, 6, 2, 3, 1, 0, 0, 2, 5, 4, 1, 5, 5, 6, 5, 3, 6, 9, 1, 7, 7, 1, 3, 6, 7, 0, 9, 1, 5, 9, 6, 3, 9, 5
OFFSET
1,1
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 5.23 Monomer-dimer constants p. 408.
FORMULA
exp( 1/(8*Pi^2) * integral_{-Pi..Pi} integral_{-Pi..Pi} log(6 + 2*cos(u) + 2*cos(v) + 2*cos(u+v)) du dv).
EXAMPLE
2.35652735334624880922914314763999476796439150067841679838661876063419126231...
MATHEMATICA
digits = 20; uv = Log[6 + 2*Cos[u] + 2*Cos[v] + 2*Cos[u + v]];
SetOptions[NIntegrate, WorkingPrecision -> digits + 5];
i1 = 2*NIntegrate[uv, {u, 0, Pi/2}, {v, 0, Pi/2}];
i2 = 4*NIntegrate[uv, {u, 0, Pi/2}, {v, Pi/2, Pi}];
i3 = 2*NIntegrate[uv, {u, -Pi, -Pi/2}, {v, Pi/2, Pi}];
i4 = 2*NIntegrate[uv, {u, -Pi/2, 0}, {v, 0, Pi/2}];
i5 = 4*NIntegrate[uv, {u, -Pi/2, 0}, {v, Pi/2, Pi}];
i6 = 2*NIntegrate[uv, {u, Pi/2, Pi}, {v, Pi/2, Pi}];
D2 = Exp[(1/(8*Pi^2))*(i1 + i2 + i3 + i4 + i5 + i6)];
RealDigits[D2, 10, digits] // First
PROG
(PARI) exp(1/(8*Pi^2) * intnum(u=-Pi, Pi, intnum(v=-Pi, Pi, log(6 + 2*cos(u) + 2*cos(v) + 2*cos(u+v))))) \\ Michel Marcus, Sep 19 2014
CROSSREFS
Sequence in context: A191665 A306233 A254105 * A001600 A175578 A347861
KEYWORD
nonn,cons
AUTHOR
EXTENSIONS
More terms from Michel Marcus, Sep 19 2014
STATUS
approved