OFFSET
1,2
COMMENTS
Values of n*tau(n)/sigma(n) corresponding to terms of A001599, where tau(n) (A000005) is the number of divisors of n and sigma(n) is the sum of the divisors of n (A000203).
Kanold (1957) proved that each term appears only a finite number of times. - Amiram Eldar, Jun 01 2020
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
R. J. Mathar, Table of n, a(n) for n = 1..937, extending the former b-file of T. D. Noe.
Marco Abrate, Stefano Barbero, Umberto Cerruti, Nadir Murru, The Biharmonic mean, arXiv:1601.03081 [math.NT], 2016.
G. L. Cohen, Email to N. J. A. Sloane, Apr. 1994
M. Garcia, On numbers with integral harmonic mean, Amer. Math. Monthly 61, (1954). 89-96.
Takeshi Goto, All harmonic numbers less than 10^14
Takeshi Goto, Table of a(n) for n=1..937
Hans-Joachim Kanold , Über das harmonische Mittel der Teiler einer natürlichen Zahl, Math. Ann., Vol. 133 (1957), pp. 371-374.
O. Ore, On the averages of the divisors of a number, Amer. Math. Monthly, 55 (1948), 615-619.
O. Ore, On the averages of the divisors of a number (annotated scanned copy)
MATHEMATICA
A001600 = Reap[Do[tau = DivisorSigma[0, n]; sigma = DivisorSigma[1, n]; h = n*tau/sigma; If[IntegerQ[h], Print[h]; Sow[h]], {n, 1, 90000000}]][[2, 1]](* Jean-François Alcover, May 11 2012 *)
PROG
(Haskell)
a001600 n = a001600_list !! (n-1)
a001600_list =
[numerator m | x <- [1..], let m = hm x, denominator m == 1] where
hm x = genericLength divs * recip (sum $ map recip divs)
where divs = map fromIntegral $ a027750_row x
-- Reinhard Zumkeller, Apr 01 2014
(PARI) lista(nn) = for (n=1, nn, if (denominator(q=n*numdiv(n)/sigma(n)) == 1, print1(q, ", "))); \\ Michel Marcus, Jan 13 2016
CROSSREFS
KEYWORD
nonn,nice,easy
AUTHOR
EXTENSIONS
More terms from Matthew Conroy, Jan 15 2006
STATUS
approved