login
A090240
Numbers which occur as the harmonic mean of the divisors of m for some m.
8
1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 21, 24, 25, 26, 27, 29, 31, 35, 37, 39, 41, 42, 44, 45, 46, 47, 48, 49, 50, 51, 53, 54, 60, 61, 70, 73, 75, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 94, 96, 97, 99, 101, 102, 105, 106, 107, 108, 110, 114, 115
OFFSET
1,2
COMMENTS
The equation n = m*tau(m)/sigma(m) has an integer solution m.
Here tau(n) (A000005) is the number of divisors of n and sigma(n) is the sum of the divisors of n (A000203).
A001600 sorted in order.
The Mersenne exponents (A000043) are in this sequence because the even perfect numbers, 2^(p-1)*(2^p-1) where p is in A000043, are all harmonic numbers (A001599) with harmonic mean of divisors p. - Amiram Eldar, Apr 15 2024
REFERENCES
For further references see A001599.
LINKS
MATHEMATICA
f[n_] := (n*DivisorSigma[0, n]/DivisorSigma[1, n]); a = Table[ 0, {120}]; Do[ b = f[n]; If[ IntegerQ[b] && b < 121 && a[[b]] == 0, a[[b]] = n], {n, 1, 560000000}]; Select[ Range[120], a[[ # ]] > 0 &] (* Robert G. Wilson v, Feb 14 2004 *)
CROSSREFS
Values of m are in A091911.
Complement of A157849.
Sequence in context: A119605 A144146 A284763 * A137407 A261406 A264387
KEYWORD
nonn
AUTHOR
R. K. Guy, Feb 08 2004
EXTENSIONS
More terms from Robert G. Wilson v, Feb 14 2004
STATUS
approved