login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A090238
Triangle T(n, k) read by rows. T(n, k) is the number of lists of k unlabeled permutations whose total length is n.
12
1, 0, 1, 0, 2, 1, 0, 6, 4, 1, 0, 24, 16, 6, 1, 0, 120, 72, 30, 8, 1, 0, 720, 372, 152, 48, 10, 1, 0, 5040, 2208, 828, 272, 70, 12, 1, 0, 40320, 14976, 4968, 1576, 440, 96, 14, 1, 0, 362880, 115200, 33192, 9696, 2720, 664, 126, 16, 1, 0, 3628800, 996480, 247968, 64704, 17312, 4380, 952, 160, 18, 1
OFFSET
0,5
COMMENTS
T(n,k) is the number of lists of k unlabeled permutations whose total length is n. Unlabeled means each permutation is on an initial segment of the positive integers. Example: with dashes separating permutations, T(3,2) = 4 counts 1-12, 1-21, 12-1, 21-1. - David Callan, Nov 29 2007
For n > 0, -Sum_{i=0..n} (-1)^i*T(n,i) is the number of indecomposable permutations A003319. - Peter Luschny, Mar 13 2009
Also the convolution triangle of the factorial numbers for n >= 1. - Peter Luschny, Oct 09 2022
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 171, #34.
FORMULA
T(n, k) is given by [0, 2, 1, 3, 2, 4, 3, 5, 4, 6, 5, 7, 6, ...] DELTA [1, 0, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938.
T(n, k) = T(n-1, k-1) + ((n+k-1)/k)*T(n-1, k); T(0, 0)=1, T(n, 0)=0 if n > 0, T(0, k)=0 if k > 0.
G.f. for the k-th column: (Sum_{i>=1} i!*t^i)^k = Sum_{n>=k} T(n, k)*t^n.
Sum_{k=0..n} T(n, k)*binomial(m, k) = A084938(m+n, m). - Philippe Deléham, Jan 31 2004
T(n, k) = Sum_{j>=0} A090753(j)*T(n-1, k+j-1). - Philippe Deléham, Feb 18 2004
From Peter Bala, May 27 2017: (Start)
Conjectural o.g.f.: 1/(1 + t - t*F(x)) = 1 + t*x + (2*t + t^2)*x^2 + (6*t + 4*t^2 + t^3)*x^3 + ..., where F(x) = Sum_{n >= 0} n!*x^n.
If true then a continued fraction representation of the o.g.f. is 1 - t + t/(1 - x/(1 - t*x - x/(1 - 2*x/(1 - 2*x/(1 - 3*x/(1 - 3*x/(1 - 4*x/(1 - 4*x/(1 - ... ))))))))). (End)
EXAMPLE
Triangle begins:
1;
0, 1;
0, 2, 1;
0, 6, 4, 1;
0, 24, 16, 6, 1;
0, 120, 72, 30, 8, 1;
0, 720, 372, 152, 48, 10, 1;
0, 5040, 2208, 828, 272, 70, 12, 1;
0, 40320, 14976, 4968, 1576, 440, 96, 14, 1;
0, 366880, 115200, 33192, 9696, 2720, 664, 126, 16, 1;
0, 3628800, 996480, 247968, 64704, 17312, 4380, 952, 160, 18, 1;
...
MAPLE
T := proc(n, k) option remember; if n=0 and k=0 then return 1 fi;
if n>0 and k=0 or k>0 and n=0 then return 0 fi;
T(n-1, k-1)+(n+k-1)*T(n-1, k)/k end:
for n from 0 to 10 do seq(T(n, k), k=0..n) od; # Peter Luschny, Mar 03 2016
# Uses function PMatrix from A357368.
PMatrix(10, factorial); # Peter Luschny, Oct 09 2022
MATHEMATICA
T[n_, k_] := T[n, k] = T[n-1, k-1] + ((n+k-1)/k)*T[n-1, k]; T[0, 0] = 1; T[_, 0] = T[0, _] = 0;
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 20 2018 *)
CROSSREFS
Another version: A059369.
Row sums: A051296, A003319 (n>0).
Cf. A084938.
Sequence in context: A205813 A127631 A122538 * A358694 A047922 A276891
KEYWORD
easy,nonn,tabl
AUTHOR
Philippe Deléham, Jan 23 2004, Jun 14 2007
EXTENSIONS
New name using a comment from David Callan by Peter Luschny, Sep 01 2022
STATUS
approved