login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A122538
Riordan array (1, x*f(x)) where f(x)is the g.f. of A006318.
2
1, 0, 1, 0, 2, 1, 0, 6, 4, 1, 0, 22, 16, 6, 1, 0, 90, 68, 30, 8, 1, 0, 394, 304, 146, 48, 10, 1, 0, 1806, 1412, 714, 264, 70, 12, 1, 0, 8558, 6752, 3534, 1408, 430, 96, 14, 1, 0, 41586, 33028, 17718, 7432, 2490, 652, 126, 16, 1, 0, 206098, 164512, 89898, 39152, 14002, 4080, 938, 160, 18, 1
OFFSET
0,5
COMMENTS
Triangle T(n,k), 0<=k<=n, read by rows, given by [0, 2, 1, 2, 1, 2, 1, ...] DELTA [1, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938 . Inverse is Riordan array (1, x*(1-x)/(1+x)).
T(n, r) gives the number of [0,r]-covering hierarchies with n segments terminating at r (see Kreweras work). - Michel Marcus, Nov 22 2014
LINKS
G. Kreweras, Sur les hiérarchies de segments, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, #20 (1973), see page 15.
FORMULA
T(n,k) = T(n-1,k-1) + T(n-1,k) + T(n,k+1) if k > 0, with T(n, 0) = 0^n, and T(n, n) = 1.
Sum_{k=0..n} T(n, k) = A001003(n).
From G. C. Greubel, Oct 27 2024: (Start)
T(2*n, n) = A103885(n).
Sum_{k=0..n} (-1)^k*T(n, k) = -A001003(n-1).
Sum_{k=0..floor(n/2)} T(n-k, k) = [n=0] + 0*[n=1] + A006603(n-2)*[n>1]. (End)
EXAMPLE
Triangle begins:
1;
0, 1:
0, 2, 1;
0, 6, 4, 1;
0, 22, 16, 6, 1;
0, 90, 68, 30, 8, 1;
0, 394, 304, 146, 48, 10, 1;
0, 1806, 1412, 714, 264, 70, 12, 1;
0, 8558, 6752, 3534, 1408, 430, 96, 14, 1;
Production matrix is:
0...1
0...2...1
0...2...2...1
0...2...2...2...1
0...2...2...2...2...1
0...2...2...2...2...2...1
0...2...2...2...2...2...2...1
0...2...2...2...2...2...2...2...1
0...2...2...2...2...2...2...2...2...1
... - Philippe Deléham, Feb 09 2014
MATHEMATICA
T[n_, n_]= 1; T[_, 0]= 0; T[n_, k_]:= T[n, k]= T[n-1, k-1] + T[n-1, k] + T[n, k+1];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* Jean-François Alcover, Jun 13 2019 *)
PROG
(Sage)
def A122538_row(n):
@cached_function
def prec(n, k):
if k==n: return 1
if k==0: return 0
return prec(n-1, k-1)-2*sum(prec(n, k+i-1) for i in (2..n-k+1))
return [(-1)^(n-k)*prec(n, k) for k in (0..n)]
for n in (0..12): print(A122538_row(n)) # Peter Luschny, Mar 16 2016
(Magma)
function T(n, k) // T = A122538
if k eq 0 then return 0^n;
elif k eq n then return 1;
else return T(n-1, k-1) + T(n-1, k) + T(n, k+1);
end if;
end function;
[T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 27 2024
CROSSREFS
Another version : A080247, A080245, A033877.
Diagonals: A000012, A005843, A054000.
Sums include: A001003 (row and alternating sign), A006603 (diagonal).
Cf. A103885.
Sequence in context: A147720 A205813 A127631 * A090238 A358694 A047922
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Sep 18 2006
STATUS
approved