OFFSET
0,5
COMMENTS
Triangle T(n,k), 0<=k<=n, read by rows, given by [0, 2, 1, 2, 1, 2, 1, ...] DELTA [1, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938 . Inverse is Riordan array (1, x*(1-x)/(1+x)).
T(n, r) gives the number of [0,r]-covering hierarchies with n segments terminating at r (see Kreweras work). - Michel Marcus, Nov 22 2014
LINKS
G. C. Greubel, Rows n = 0..100 of the triangle, flattened
G. Kreweras, Sur les hiérarchies de segments, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, #20 (1973), see page 15.
FORMULA
T(n,k) = T(n-1,k-1) + T(n-1,k) + T(n,k+1) if k > 0, with T(n, 0) = 0^n, and T(n, n) = 1.
Sum_{k=0..n} T(n, k) = A001003(n).
From G. C. Greubel, Oct 27 2024: (Start)
T(2*n, n) = A103885(n).
Sum_{k=0..n} (-1)^k*T(n, k) = -A001003(n-1).
Sum_{k=0..floor(n/2)} T(n-k, k) = [n=0] + 0*[n=1] + A006603(n-2)*[n>1]. (End)
EXAMPLE
Triangle begins:
1;
0, 1:
0, 2, 1;
0, 6, 4, 1;
0, 22, 16, 6, 1;
0, 90, 68, 30, 8, 1;
0, 394, 304, 146, 48, 10, 1;
0, 1806, 1412, 714, 264, 70, 12, 1;
0, 8558, 6752, 3534, 1408, 430, 96, 14, 1;
Production matrix is:
0...1
0...2...1
0...2...2...1
0...2...2...2...1
0...2...2...2...2...1
0...2...2...2...2...2...1
0...2...2...2...2...2...2...1
0...2...2...2...2...2...2...2...1
0...2...2...2...2...2...2...2...2...1
... - Philippe Deléham, Feb 09 2014
MATHEMATICA
T[n_, n_]= 1; T[_, 0]= 0; T[n_, k_]:= T[n, k]= T[n-1, k-1] + T[n-1, k] + T[n, k+1];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* Jean-François Alcover, Jun 13 2019 *)
PROG
(Sage)
def A122538_row(n):
@cached_function
def prec(n, k):
if k==n: return 1
if k==0: return 0
return prec(n-1, k-1)-2*sum(prec(n, k+i-1) for i in (2..n-k+1))
return [(-1)^(n-k)*prec(n, k) for k in (0..n)]
for n in (0..12): print(A122538_row(n)) # Peter Luschny, Mar 16 2016
(Magma)
function T(n, k) // T = A122538
if k eq 0 then return 0^n;
elif k eq n then return 1;
else return T(n-1, k-1) + T(n-1, k) + T(n, k+1);
end if;
end function;
[T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 27 2024
CROSSREFS
Cf. A103885.
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Sep 18 2006
STATUS
approved