login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A054000 a(n) = 2*n^2 - 2. 30
0, 6, 16, 30, 48, 70, 96, 126, 160, 198, 240, 286, 336, 390, 448, 510, 576, 646, 720, 798, 880, 966, 1056, 1150, 1248, 1350, 1456, 1566, 1680, 1798, 1920, 2046, 2176, 2310, 2448, 2590, 2736, 2886, 3040, 3198, 3360, 3526, 3696, 3870, 4048, 4230, 4416 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

a(n) = number of edges in (n+1) X (n+1) square grid with all horizontal, vertical and great diagonal segments filled in.

Sequence allows us to find X values of the equation: 2*X^3 + 4*X^2 = Y^2. To find Y values: b(n) = 2*n*(2*n^2 - 2). - Mohamed Bouhamida (bhmd95(AT)yahoo.fr), Nov 06 2007

Second term of an arithmetic progression of 5 numbers with common difference 2n+1. The sum of squares of such 5 terms equals the sum of squares of 5 consecutive numbers starting a(n) + 2n + 1. - Carmine Suriano, Oct 16 2013

For m > 2, a(m-1) = 2*m*(m-2) is the number of Hamiltonian circuits on an m-gonal bipyramid with labeled vertices. - Stanislav Sykora, Jul 22 2014

a(n+1), n >= 0, appears also as the third member of the quartet [p0(n), p1(n), a(n+1), p3(n)] of the square of [n, n+1, n+2, n+3] in the Clifford algebra Cl_2 for n >= 0. p0(n) = -A147973(n+3), p1(n) = A046092(n) and p3(n) = A139570(n). See a comment on A147973, also with a reference. - Wolfdieter Lang, Oct 15 2014

From Bui Quang Tuan, Mar 31 2015: (Start)

For n >= 2, a(n) is the total sum of all numbers on the perimeter of a square consisting of n columns, each of which contains n numbers 1, 2, 3, ..., n.

Here is an example with n = 5:

  1 1 1 1 1

  2 2 2 2 2

  3 3 3 3 3

  4 4 4 4 4

  5 5 5 5 5

where 1+1+1+1+1 + 2+2 + 3+3 + 4+4 + 5+5+5+5+5 = 48 = a(5).

(End)

Nonnegative k such that k/2+1 is a square. - Bruno Berselli, Apr 10 2018

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..5000

Index entries for linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

a(n) = 4*n + a(n-1) - 2, with n>1, a(1)=0. - Vincenzo Librandi, Aug 06 2010

a(1)=0, a(2)=6, a(3)=16; for n>3, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Feb 03 2012

a(n) = (n+i)^2 + (n-i)^2, where i=sqrt(-1). - Bruno Berselli, Jan 23 2014

a(n) = 1*A000290(n-1) + 2*A000217(n-1) + 3*A001477(n-1). - J. M. Bergot, Apr 23 2014

G.f.: 2*x^2*(3 - x)/(1 - x)^3. - Vincenzo Librandi, Apr 01 2015

E.g.f.: 2*(x^2 + x -1)*exp(x) + 2. - G. C. Greubel, Jul 13 2017

EXAMPLE

For n=5, a(5)=48 and 37^2 + 48^2 + 59^2 + 70^2 + 81^2 = 59^2 + 60^2 + 61^2 + 62^2 + 63^2. - Carmine Suriano, Oct 16 2013

MAPLE

[ seq(2*n^2 - 2, n=1..60) ];

MATHEMATICA

2 Range[50]^2 - 2 (* or *) LinearRecurrence[{3, -3, 1}, {0, 6, 16}, 50] (* Harvey P. Dale, Feb 03 2012 *)

CoefficientList[Series[2 x (3 - x) / (1 - x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Apr 01 2015 *)

PROG

(PARI) a(n)=2*n^2-2 \\ Charles R Greathouse IV, Sep 24 2015

CROSSREFS

a(n) = A100345(n+1, n-4) for n>2.

Cf. A000217, A001082, A002378, A002943, A005563, A028347, A036666, A046092, A056220, A062717, A067725, A087475.

Sequence in context: A164052 A264938 A168472 * A113742 A102214 A301679

Adjacent sequences:  A053997 A053998 A053999 * A054001 A054002 A054003

KEYWORD

nonn,easy

AUTHOR

Asher Auel (asher.auel(AT)reed.edu), Jan 12 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 18 06:41 EDT 2018. Contains 313823 sequences. (Running on oeis4.)