OFFSET
1,2
COMMENTS
The definition: "a(1) = 1; for n>1, a(n) is smallest number greater than a(n-1) and not equal to any a(i)+a(j) with i and j <= n-1" produces the odd numbers 1, 3, 5, ...
Jonathan Vos Post asks if 1, 2, 4 and 5 are the only values of n for which n^2 divides a(n), Sep 19 2006. J. Lowell, Oct 02 2006 remarks that n = 1, 2, 4, 5 and 10 have this property and conjectures that there are no other values.
EXAMPLE
The 5th term cannot be 20 because 20 = 16+4 and 16 and 4 are both in the sequence.
MAPLE
# a[n] = n-th term of sequence, m[n] = a[n]/n = A122543(n) (Maple program from N. J. A. Sloane)
a:=array(0..100000); m:=array(0..100000); hit:=array(0..100000); B:=100000; M:=100;
for n from 1 to B do hit[n]:=0; od:
a[1]:=1; m[1]:=1; a[2]:=4; m[2]:=2; hit[2]:=1; hit[5]:=1; hit[8]:=1;
for n from 3 to M do i:=n*(floor(a[n-1]/n))+n;
while hit[i] = 1 do i:=i+n; od;
a[n]:= i; m[n]:= i/n;
for j from 1 to n do hit[a[j]+i]:=1; od: od:
[seq(a[n], n=1..M)]; [seq(m[n], n=1..M)];
MATHEMATICA
f[s_] := Block[{n, k}, n = Length[s] + 1; k = Last[s] + n - Mod[Last[s], n]; While[MemberQ[Union[Plus @@@ Tuples[s, 2]], k], k += n]; Append[s, k]]; Nest[f, {1}, 51] (* Ray Chandler, Sep 29 2006 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
J. Lowell, Sep 18 2006
EXTENSIONS
More terms from N. J. A. Sloane and Chai Tian (Chao.Tian(AT)epfl.ch), Sep 19 2006
STATUS
approved