login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059736
A class of polytopal spheres.
1
0, 0, 1, 0, 1, 1, 4, 6, 16, 25, 52, 89, 175, 308, 593, 1066, 2031, 3743, 7124, 13330, 25445, 48134, 92160, 175743, 337541, 647269, 1246802, 2400776, 4636319, 8955984, 17334720, 33570730, 65107971, 126355239, 245492141, 477284073
OFFSET
1,7
LINKS
V. A. Liskovets, Some easily derivable sequences, J. Integer Sequences, 3 (2000), #00.2.2.
FORMULA
a(n) = A007147(n) - [n^2/12] - 1.
MAPLE
A016116 := n->2^floor(n/2):with(numtheory): A000016 := proc(n) local d, t1: if n = 0 then RETURN(1) else t1 := 0; for d from 1 to n do if n mod d = 0 and d mod 2 = 1 then t1 := t1+phi(d)*2^(n/ d)/(2*n); fi; od; RETURN(t1); fi; end: A007147 := n->1/2*(A016116(n-1)+A000016(n)): A059736 := n->A007147(n) - floor(n^2/12) - 1: for j from 1 to 100 do printf(`%d, `, A059736(j)) od:
MATHEMATICA
a[n_] := (1/2)*(2^Quotient[n - 1, 2] + Total[(Mod[#, 2]*EulerPhi[#]*2^(n/#) &) /@ Divisors[n]]/(2*n)) - Floor[n^2/12] - 1;
Array[a, 36] (* Jean-François Alcover, Aug 30 2019 *)
CROSSREFS
Sequence in context: A321411 A242251 A122537 * A261682 A102731 A007179
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Feb 09 2001
EXTENSIONS
More terms from James A. Sellers, Feb 20 2001
STATUS
approved