OFFSET
0,2
COMMENTS
At n=4 the 4th term of A(x)^4 is 4!*4x^3 = 96*x^3, as demonstrated by A(x)^4 = 1 + 8*x + 32*x^2 + 96*x^3 + 296*x^4 + ... See also A075834.
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..445
FORMULA
a(n) = Sum_{j=2..(n-2)} (j-1)*a(j)*a(n-j) for n>=2, with a(0)=1, a(1)=2.
G.f. satisfies: A(x) = 1 + 2*Sum_{n>=1} n^n * x^n / (A(x) + n*x)^n. - Paul D. Hanna, Feb 04 2013
a(n) ~ exp(-2) * n! * n. - Vaclav Kotesovec, Nov 23 2024
PROG
(PARI) a(n)=if(n<0, 0, polcoeff(x/serreverse(sum(k=1, n+1, k!*x^k, x^2*O(x^n))), n)) /* Michael Somos, Feb 14 2004 */
(PARI) a(n)=local(A=1+x); for(i=1, n, A=1+2*sum(m=1, n, m^m*x^m/(A+m*x+x*O(x^n))^m)); polcoeff(A, n)
for(n=0, 30, print1(a(n), ", ")) \\ Paul D. Hanna, Feb 04 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Philippe Deléham, Feb 06 2004
STATUS
approved