login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A090753
Coefficients of power series A(x) such that n-th term of A(x)^n = n!*n*x^(n-1), for n>0.
4
1, 2, 2, 4, 16, 88, 600, 4800, 43680, 443296, 4949920, 60217408, 792134528, 11200176128, 169375195136, 2728019576832, 46626359376384, 842947307334144, 16073131554826752, 322403473258650624, 6786861273524305920
OFFSET
0,2
COMMENTS
At n=4 the 4th term of A(x)^4 is 4!*4x^3 = 96*x^3, as demonstrated by A(x)^4 = 1 + 8*x + 32*x^2 + 96*x^3 + 296*x^4 + ... See also A075834.
LINKS
FORMULA
a(n) = Sum_{j=2..(n-2)} (j-1)*a(j)*a(n-j) for n>=2, with a(0)=1, a(1)=2.
Sum_{j>=0} a(j)*A090238(n-1, k+j-1) = A090238(n, k).
G.f. satisfies: A(x) = 1 + 2*Sum_{n>=1} n^n * x^n / (A(x) + n*x)^n. - Paul D. Hanna, Feb 04 2013
a(n) ~ exp(-2) * n! * n. - Vaclav Kotesovec, Nov 23 2024
PROG
(PARI) a(n)=if(n<0, 0, polcoeff(x/serreverse(sum(k=1, n+1, k!*x^k, x^2*O(x^n))), n)) /* Michael Somos, Feb 14 2004 */
(PARI) a(n)=local(A=1+x); for(i=1, n, A=1+2*sum(m=1, n, m^m*x^m/(A+m*x+x*O(x^n))^m)); polcoeff(A, n)
for(n=0, 30, print1(a(n), ", ")) \\ Paul D. Hanna, Feb 04 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Philippe Deléham, Feb 06 2004
STATUS
approved