login
A244108
Number T(n,k) of permutations of {1,2,...,n} that result in a binary search tree of height k; triangle T(n,k), k>=0, k<=n<=2^k-1, read by columns.
12
1, 1, 2, 2, 4, 16, 40, 80, 80, 8, 64, 400, 2240, 11360, 55040, 253440, 1056000, 3801600, 10982400, 21964800, 21964800, 16, 208, 2048, 18816, 168768, 1508032, 13501312, 121362560, 1099169280, 10049994240, 92644597760, 857213660160, 7907423180800, 72155129446400
OFFSET
0,3
COMMENTS
Empty external nodes are counted in determining the height of a search tree.
FORMULA
Sum_{k=0..n} k * T(n,k) = A316944(n).
Sum_{k=n..2^n-1} k * T(k,n) = A317012(n).
EXAMPLE
Triangle T(n,k) begins:
: 1;
: 1;
: 2;
: 2, 4;
: 16, 8;
: 40, 64, 16;
: 80, 400, 208, 32;
: 80, 2240, 2048, 608, 64;
: 11360, 18816, 8352, 1664, 128;
: 55040, 168768, 104448, 30016, 4352, 256;
: 253440, 1508032, 1277568, 479040, 99200, 11008, 512;
MAPLE
b:= proc(n, k) option remember; `if`(n<2, `if`(k<n, 0, 1),
add(binomial(n-1, r)*b(r, k-1)*b(n-1-r, k-1), r=0..n-1))
end:
T:= (n, k)-> b(n, k)-b(n, k-1):
seq(seq(T(n, k), n=k..2^k-1), k=0..5);
MATHEMATICA
b[n_, k_] := b[n, k] = If[n<2, If[k<n, 0, 1], Sum[Binomial[n-1, r]*b[r, k-1]*b[n-1-r, k-1], {r, 0, n-1}]]; T[n_, k_] := b[n, k] - b[n, k-1]; Table[T[n, k], {k, 0, 5}, {n, k, 2^k-1}] // Flatten (* Jean-François Alcover, Feb 19 2017, translated from Maple *)
CROSSREFS
Row sums give A000142.
Column sums give A227822.
Main diagonal gives A011782, lower diagonal gives A076616.
T(n,A000523(n)+1) = A076615(n).
T(2^n-1,n) = A056972(n).
T(2n,n) = A265846(n).
Cf. A195581 (the same read by rows), A195582, A195583, A316944, A317012.
Sequence in context: A291338 A326481 A009542 * A032318 A090753 A091788
KEYWORD
nonn,tabf
AUTHOR
Alois P. Heinz, Dec 21 2015
STATUS
approved